期刊文献+

一种基于视觉显著性的图像融合算法

Image Fusion Method Based on Visual Saliency
下载PDF
导出
摘要 基于视觉显著特征提出一种新的图像融合算法。首先对源图像进行小波分解,得到低频系数和高频系数;然后针对低频系数提出一种基于视觉显著性的融合规则,对高频系数采用绝对值取大的融合规则;最后对融合后的低频系数和高频系数进行小波逆变换得到最终融合图像。该方法能完好地将源图像的细节融合在一起。仿真实验表明,该算法在视觉效果上比传统及改进方法更好,同时互信息、平均结构相似性、信息熵等传统客观评价指标有所提高。 This paper proposed a new approach for image fusion based on visual saliency .Sourse images are decomposed by wavelet to get coefficients of low and high frequency,then we fuse part of low frequency using salient method proposed and fuse part of high frequency by selecting arge bsolute avelet coefficients . Fused image will be got by wavelet inverse transformation.This method will fuse details of source images beautifully .It’s proved that method proposed outperforms the traditional and improved method in visual effect and some assessment criteria are advanced ,such as mutual information, average structural similarity ,entropy and so on.
出处 《电视技术》 北大核心 2015年第5期38-40,共3页 Video Engineering
基金 国家自然科学基金项目(61271420) 广东省自然科学基金项目(S012020011034)
关键词 图像融合 显著性 显著特征 小波变换 image fusion saliency salient feature wavelet transformation
  • 相关文献

参考文献8

  • 1GOSHTASBY A A,NIKOLOV S. Image fusion:advances in the state of the art [ J]. Inf. Fusion, 2007,8 ( 2 ) : 114-118.
  • 2ZHANG Q, GUO B. Muhifocus image fusion using the non-subsam- pled contourlet transform [ J ]. Signal Process, 2009, 92 ( 7 ) : 1334-1346.
  • 3XYDEAS C, PETROVIC V. Objective image fusion performance measure [ J ]. Electronics Letters,2000,36 ( 4 ) : 308 -309.
  • 4LI Shutao, KANG Xudong, HU Jianwen. Image fusion with guided fil- tering [ J ]. IEEE Trans. Image Processing, 2013, 22 ( 7 ) : 2864-2865.
  • 5LEVENTHAL A G. The neural basis of visual function :vision and vi- sualdysfunction [ M ] Boca Raton, Fla. : CRC Press, 199 1.
  • 6ITrl L, KOCH C, NIBURE. A model of saliency-based visual atten- tion for rapid scene analysis [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254-1259.
  • 7邓苗,张基宏,柳伟,梁永生.基于形态非抽样小波的实时图像融合方法[J].计算机应用,2012,32(10):2809-2813. 被引量:8
  • 8ZHOU W, ALAN C B, HAMID R S, et al. Image quality assessment: from error visibility to structural similarity [ J ]. IEEE Trans. Image Processing,2004,13 ( 4 ) : 1 - 14.

二级参考文献13

  • 1CHIBANI Y, HOUACINE A. On the use of the redundant wavelet transform tbr multisensor image fusion[ C]// The 7th 1EEE Interna- tional Conference on Electronics, Circuits and Systems. Jounith: IEEE, 2000:442-445.
  • 2HEIJMANS H J A M, GOUTSIAS J. Nonlinear multi-resolution sig- nal decomposition schemes -- part Ⅱ: Morphological wavelets[ J]. IEEE Transactions on Image Processing, 2000, 9 ( 11 ) : 1897 - 1913.
  • 3DE I, CHANDA B. A simple and efficient algorithm for muhifocus image fusion using morphalogieal wavelets[ J]. Signal Processing, 2006, 86(5) :924 -936.
  • 4LIN P L, HUANG P Y. Fusion methods based on dynamic-segmen- ted morphological wavelet or cut and paste for muhifocus images[ J]. Signal Processing, 2008, 88(6) : 1511 - 1527.
  • 5ZHANG J F, SMITH J S, WU Q H. Morphological undecimated wavelet decomposition fbr fault location on power transmission lines [J]. IEEE Transactions on Circuits and Systems, 2006, 53(6): 1395 - 1402.
  • 6ZHANG W B, SHEN L, L1 J S, et al. Morphological undecimated wavelet decomposition for fault feature extraction of rolling element bearing[ C]// CISP'09: Proceedings of 2nd International Congress on Image and Signal Processing. [ S. 1. ] : 1EEE, 2009:1 -5.
  • 7de CUNHA A L, ZHOU J1ANPING, Do MINH N. The non-subsam- pied contourlet transform: Theory., design, and applications[ J]. IEEE Transactions on Image Processing, 2006, 15 ( 10): 3089 - 3101.
  • 8XYDEAS C S, PETROVIC V. Objective image fusion performance measure[J].Electronics Letters, 2000, 36(4) : 308 - 309.
  • 9章立军,阳建宏,徐金梧,杨德斌.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56-59. 被引量:23
  • 10赵鹏,王霓虹,浦昭邦.基于形态小波分解金字塔的图像融合[J].光电子.激光,2008,19(6):814-817. 被引量:12

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部