摘要
提出了一个求等差数列方幂和的极限法.构造了一个函数D(a,d,k,n;x),其中:a,d,k为任意实数;n为正整数;x为实变量.证明了对任意等差数列a+(i-1)d(i=1,2,3,…),其前n项的k次幂之和为Sn(a,d,k)=limx→0(a,d,k,n;x)=nΣi=0[a+(i-1)d]k.
Put forward a new method to find power sum of a arithmetic progression by using of limit process. A function D(a, d, k, n, x) was constructed, wherea, d, k are arbitrary real numbers, n is a positive integer, x is a real variable. Also proofed that to arbitrary arithmetic progression a + (i - 1)d ( i = 1, 2, 3, ... ), the k - power sum of its preceding n terms is Sn(a,d,k)=limx→0(a,d,k,n;x)=nΣi=0[a+(i-1)d]k
出处
《高师理科学刊》
2015年第2期4-6,共3页
Journal of Science of Teachers'College and University
基金
云南省教育厅科学研究基金资助项目(2013Y578)
关键词
函数极限
等差数列
自然数
方幂和
function limit
arithmetic progression
natural number
power sum