期刊文献+

一种改进的变分正则化CT重建算法

An improved variational regularization CT reconstruction algorithm
下载PDF
导出
摘要 针对常规ART算法重建图像像素值不稳定,收敛速度慢的缺点,从正则化方法和求解不适定方程问题的数学角度入手,提出了能应用在CT重建中的一种改进的自适应变分正则法.该算法首先对投影数据进行ART重建,然后引入重建图像的梯度作为先验信息,并让梯度自适应下降,来改善重建结果.仿真实验表明,本文算法不仅很好地重建了完整图像的结构信息,还使重建图像更加平滑,收敛速度更快. Considering its slow convergence and unsmooth reconstruction image for conventional ART algorithm, proposed an adaptive variational regular algorithm from the mathematical point of regularization method and solving ill-posed equations, which can be used in CT reconstruction. To improve the reconstruction results, firstly, using ART algorithm reconstruct an image, then making gradient as a priori information and drop adaptively. Simulation experiments showed that the proposed algorithm can not only reconstruct complete structure information, but also make the image of reconstruction smoother and the time fewer.
作者 贺鑫 李权
出处 《高师理科学刊》 2015年第2期33-35,共3页 Journal of Science of Teachers'College and University
关键词 正则化 CT重建 自适应 收敛速度 regularization CT reconstruction adaptive convergence speed
  • 相关文献

参考文献3

二级参考文献52

  • 1Vainikko G, On the Optimality of Methods for Ill-Posed Problems, Z. Anal. Anw., 6:4(1987), 351-362.
  • 2Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems, New York:Springer-Verlag, 1996.
  • 3Engl H,W., Hanke M. and Neubauer A., Regularization of Inverse Problems, Dordrecht:Kluwer Acdemic Publishers, 1996.
  • 4Schroter T. and Tautenhahn U., On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems, Z. Anal. Anw., 13:4 (1994), 697-710.
  • 5Tautenhahn U, Optimality for Ill-Posed Problems Under General Source Conditions, Numet. Funct. Anal. and Optimiz, 19 (1998), 377-398.
  • 6Kato T. Perturbation Theory for Linear Operaors, New York: Springer-Verlag, 1966.
  • 7Vani C, Avudainayagam A. Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets[J]. Math Comput Modelling, 2002, 36:1151-1159.
  • 8Bukhgeim A L, Cheng J, Yamamoto M. Stability for an inverse boundary problem of determining a part of boundary[J]. Inverse Problems, 1999, 15:1021-1032.
  • 9Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer, 1996.
  • 10Berntsson F, Elden L. Numerical solution of a Cauchy problem for the Laplace equation[J]. Inverse Problems, 2001, 17:839-853.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部