期刊文献+

一般函数的计算机病毒模型最优控制 被引量:1

Optimal Control of Computer Virus Model Based on General Function
下载PDF
导出
摘要 研究一类改进的一般函数的计算机病毒模型,并引入杀毒软件作为系统的控制变量,应用极小值原理,得到一个时变的最优控制策略。时变的控制策略不但能够使得购买杀毒软件及其更新的费用最小,而且能将被感染的计算机的数目降到最低。数值模拟显示:在控制的这段时间内,并不需要一直保持最大的效力。 A class of improved general function model of computer virus was investigated in this paper. Antivirus software was introduced as control variable of the system,and the principle of minimum was applied. A time-varying optimal control strategy was obtained. The time-varying control strategy can not only minimize the expense of purchasing anti-virus software and update,but also minimize the number of infected computers. The numerical simulation shows that no full efficacy is needed all the time during the control period.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第2期96-99,8,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(61074192 11101028)
关键词 计算机病毒 一般函数 最优控制 数值模拟 computer virus general function optimal control numerical simulation
  • 相关文献

参考文献14

  • 1Wierman J C, Marchette D J. Modeling Computer Virus Prevalence with a Susceptible Infected Susceptible Model with Reintroduction[ J]. Computational Statistics & Analysis ,2004,45 ( 1 ) :3 - 23.
  • 2Yuan H, Chen G. Network Virus Epidemic Model with the Point to Group Information Propagation[ J]. Applied Mathematics and Computation,2008,206( 1 ) :357 - 367.
  • 3Mishra B K, Saini D K. SEIRS Epidemic Model with Delay for Transmission of Malicious Objects in Computer Network [ J ]. Applied Mathematics and Computation,2007,188 ( 2 ) : 1476 - 1482.
  • 4Billings L,Spears W M,Schwartz I B. A Unified Prediction of Computer Virus Spread in Connected Networks[ J]. Physics Letters A ,2002,297 (6) :261 - 266.
  • 5Piqueira J R C,Navarro B F. Epidemiological Models Applied to Viruses in Computer Networks[ J]. Joumal of Computer Science ,2005 ( 1 ) :31 - 34.
  • 6Gan C Q, Yang X F, Liu W P, et al. A Propagation Model of Computer Virus with Nonlinear Vaccination Probability [ J ]. Commun Nonlinear Sci Numer Simulat,2014 ,19 :92 - 100.
  • 7Mishra B K, Pandey S K. Dynamic Model of Worms with Vertical Transmission in Computer Network [ J]. Applied Mathematics and Comnutation.2011.217.8438 - 8446.
  • 8王娟,何俊杰,王倩.一类具有时滞的媒介传染病模型非负解的存在性[J].郑州大学学报(理学版),2014,46(3):1-4. 被引量:3
  • 9张旭龙,杨小帆.计算机病毒的最优控制模型[J].计算机应用研究,2011,28(8):3040-3042. 被引量:5
  • 10Zhu Q Y,Yang X F,Yang L X, et al. Optimal Control of Computer Virus Under a Delay Model[ J ]. Applied Mathematics and Computation ,2012,218 : 11613 - 11619.

二级参考文献24

  • 1丁雪枫,马良,丁雪松.通用有效的动态系统网络病毒传播模型方法研究[J].计算机应用研究,2009,26(2):696-698. 被引量:2
  • 2BILLINGS L, SPEARS W M, SCHWARTZ I B. A unified prediction of computer virus spread in cgnnected networks[J]. Physics Letters A, 2002, 297(6) :261-266.
  • 3ARAUJO V O. Modelagem Dinamica de virus de eomputador [ D ]. Sao Paulo, Brazil : Escola Politecnica da USP,2004.
  • 4PIQUEIRA J R C, NAVARRO B F. Epidemiologieal models applied to viruses in computer networks [ J ]. Journal of Computer Science, 2005, 1 ( 1 ) :31-34.
  • 5MISHRA B K, SAINI D. Mathematical models on computer viruses [J]. Applied Mathematics and Computation, 2007, 187(2): 929-936.
  • 6PIQUEIRA J R C, VASCONCELOS A A, GABRIEL C E C J, et al. Dynamic models for computer viruses [ J]. Computers & Security, 2008, 27(7) :355-359.
  • 7HAN Xie, TAN Qiu-lin. Dynamical behavior of computer virus on Intemet[ J]. Applied Mathematics and Computation, 2010, 217 (7) :2520-2526.
  • 8FISTER K R, LENHART S, MCNALLY J S. Optimizing chemotherapy in an HIV model[J]. Electron Journal of Differential Equations, 1998,32 : 1-12.
  • 9ZAMAN G, KANG Y H, JUNG I H. Optimal vaccination and treat ment in the SIR epidemic model [ J ]. Proceeding of the KSIAM, 2007,3(2) :31-33.
  • 10ZAMAN G, KANG Y H, JUNG I H. Stability analysis and optimal vaccination of an SIR epidemic model [ J ]. Biosystems, 2008, 93 ( 3 ) : 240- 249.

共引文献6

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部