摘要
采用乙二醇还原硝酸银工艺对玻璃粉进行活化处理,再以银氨溶液为前驱体、葡萄糖为还原剂,用化学镀法在玻璃粉表面镀覆纳米银层,得到Ag/玻璃复合粉末。利用X射线衍射、扫描电镜及能谱分析等方法研究Ag/玻璃复合粉末的结构与成分,并在溶液pH值约为13.0的条件下,分别研究乙二醇活化与镀液中的硝酸银浓度c(Ag NO3)对银镀层的影响。结果表明,在活化基础上,当c(Ag NO3)为0.057 mol/L,葡萄糖浓度为0.088 mol/L时,得到均匀的纳米银镀层。分别采用普通玻璃粉与改性玻璃粉配制正面银浆,进一步制备多晶硅太阳能电池片,与普通玻璃粉相比,用镀银玻璃粉配制的正面银浆可以致密栅线,电池的光电转换效率从17.45%提高到17.51%。
Glass frits were activated through ethylene glycol reducing Ag NO3, nano-silver coated glass frits composite powders were prepared by electroless plating method using glucose as reducing reagent and silver-ammonia solution as precurso. The microstructures and phase composition of glass frits coated silver were characterized by SEM, EDS and XRD. The effects of ethylene glycol activating and concentration of Ag NO3 on silver coating were studied when p H of the solution is 13.0. The results show that, nano-silver coating is uniform when the concentration of silver nitrate and glucose are 0.057 mol/L and 0.088 mol/L. The polycrystalline silicon solar cells were prepared using ordinarily and modified glass frits, respectively. Compared with silver slurry made up by ordinarily glass frits, the face side silver slurry made up by modified glass frits can densified electrode grids and the translational ratio of sunlight to electricity increases from 17.45% to 17.51%.
出处
《粉末冶金材料科学与工程》
EI
北大核心
2015年第1期99-105,共7页
Materials Science and Engineering of Powder Metallurgy
基金
湖南省科技重大专项(2009FJ1002-3)
关键词
玻璃粉
化学镀银
硝酸银浓度
太阳电池
glass frits
electroless silver plating
concentration of AgNO3
solar cell