期刊文献+

7055铝合金粉末的氩气低压雾化技术 被引量:5

Low-pressure argon atomization process of 7055Al alloy powders
下载PDF
导出
摘要 将传统环缝喷嘴结构改造为Laval型出气口,以实现低压高效雾化制粉,利用该喷嘴进行7055铝合金氩气低压雾化制粉实验,对Laval型喷嘴的雾化能力、熔滴凝固特性与粉末微观组织进行研究。结果表明:与传统紧耦合喷嘴相比,Laval型喷嘴具有更好的低压雾化能力,在较低雾化压力下即可获得超音速雾化气流,雾化压力为0.4,0.6和0.8 MPa时雾化粉末的质量中径d50分别为63.5,57.1和43.4μm,大部分合金粉末呈球形或类球形;雾化熔滴凝固过程中产生大量尺寸在0.5-2.5μm范围内的细小枝晶组织,枝晶间距λ与粉末粒径d近似满足如下关系:λ=0.192 3 d^ 0.547;雾化粉末具有快速凝固特性,冷却速率达到10^4-10^5 K/s,随熔滴粒径增大而减小。 In order to improve the energy transfer efficiency and manufacturability, a Laval-type atomizer was designed and atomization experiments were conducted to evaluate the atomization capability of the designed atomizer. The argon atomization results for 7055 Al alloy show that when the atomization pressures P0=0.4, 0.6 and 0.8 MPa, the corresponding mass median diameter d50 of atomized powders are 63.5, 57.1 and 43.4 μm, respectively. Comparing with conventional close coupled atomizer, the designed Laval-type atomizer can obtain supersonic gas flow at lower gas pressure, and has better low-pressure atomization capability. During the cooling progress of atomized droplets, plenty of fine dendritic crystals with the size ranging from 0.5 to 2.5 μm formed, and the measured dendrite arm spacing λ and powder size d have the following relationship: λ=0.192 3d^0.547. The calculated cooling rate of atomized droplets decreases as the diameter increases, and the cooling rate of atomized droplets can reach 10^4-10^5 K/s.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2015年第1期112-117,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51275420)
关键词 Laval喷嘴 7055合金 低压雾化 Laval atomizer 7055Al alloy low-pressure gas atomization
  • 相关文献

参考文献2

二级参考文献24

  • 1邓玉昆,陈景榕,王世章.高速工具钢[M].北京:冶金工业出版社,2001.
  • 2Lim C S, Clegg A J, Loh N L. The reduction of dendrite arm spacing using a novel pressure-associated investment casting approach [J]. Journal of Materials Processing Technology, 1997, 70: 99-102
  • 3Flemings M C. Solidification Processing [M]. New York: McGraw-Hill Inc., 1984
  • 4Feurer U, Wunderlin R. Metal Solidification [M]. Stuttgart:DGM Fachber, 1977
  • 5Kirkwood D H. Three-dimensional growth morphologies in diffusion-controlled channel growth [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 1997, 55 (6): 7789-7792
  • 6Mortensen A. Secondary Arm Spacing [M] . New York: McGrawHill Inc., 1991
  • 7Boettinger W J, Coriell S. R, et al. Solidification microstructures: recent development, future direction [J]. Acta Mater, 2000, 48:43 - 70
  • 8Glicksman M E, Marsh S P. Handbook of Crystal Growth: The Dendrite [M]. Amsterdam: D. T. J. Hurle, 1993
  • 9salas G B, Ramirez J V, Noguez M E A, et al. Dendrite arm spacing-local solidification time relation [J]. Scripta Metallurgica et Materialia, 1995, 32 (2): 295-299
  • 10Kurz W, Fisher D J. Fundamentals of Solidification [M].Switzerland: Trans Tech Publication, 1998

共引文献42

同被引文献39

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部