期刊文献+

Static Analysis of Eolic Blade through Finite Element Method and OOP C++ 被引量:1

Static Analysis of Eolic Blade through Finite Element Method and OOP C++
下载PDF
导出
摘要 This work deals with a description of an elastic analysis of eolic blade (preprocessing, processing and post-processing stages). The eolic blade geometry is approximated by flat finite elements in which the membrane effects are evaluated using the FF (free formulation) finite element and the flexure effects are calculated using DKT (discrete shear triangle) finite element. The pre-processing stage is implemented using OpenGL library, to provide the graphical construction for geometry, mesh orientation, and other requirements of the finite element model. For the processing stage is built a specific dll (dynamic link library) library implemented in C++ language for the FF and DKT elements analysis. The post-processing stage has been built using specific dialogs to present all results in the graphic interface, where the static displacements of the eolic blade model are shown.
出处 《Journal of Energy and Power Engineering》 2015年第1期108-116,共9页 能源与动力工程(美国大卫英文)
关键词 Flat shell FEM (finite element method) DKT FF 有限元法 OOP OpenGL库 有限元模型 刀片 数字话机 几何形状 有限元近似
  • 相关文献

参考文献14

  • 1Menezes Junior, R. A., Mendonca, A. V., Paiva, J. B., and Mendonca, A. V. 2010. "A User-Friendly Environment for Planar and Space Frames Using the Boundary Element Method." In Proceedings of Ect 2010 the Seventh International Conference on Engineering Computational Technology, 94-115.
  • 2Zienkiewics, O. C. 1977. The Finite Element Method, 2nd ed .. New York: Mcgraw-Hill.
  • 3Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. 1995. Computer Graphics: Principles and Practice in C. Upper Saddle River: Addison-Wesley.
  • 4Shreiner, D., Woo, M., Neder, J., and David, T. 2005. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 2, 5th ed .. Upper Saddle River: Addison-Wesley.
  • 5Hearn, D. D., Baker, M. P., and Carithers, W. 2010.Computer Graphics with Open GL. Upper Saddle River: Prentice Hall.
  • 6Bergman, P. G., and FeJippa, C. A. 1985. "A Triangular Membrane Element with Rotational Degrees of Freedom." Computer Methods in Applied Mechanics and Engineering 50 (1): 25-69.
  • 7Batoz, J. L., Bathe, K. J., and Ho, L. W. "A Study of Three-Node Triangular Plate Bending Elements." International Journal for Numerical Methods in Engineering 15 (12): 1771-812.
  • 8Batoz, J. L., and Lardeur, P. 1989. "A Discrete Shear Triangular Nine d.o.f. Element for the Analysis of Thick to Very Thin Plates." International Journal for Numerical Methods in Engineering 28 (3): 533-60.
  • 9Batoz, J. L., and Dhatt, G. S. 1992. Modelisation des Structures par elements Finis. Vol 3: Coques. Paris: Hermes, 448-55.
  • 10Vlasov, V. Z. 1961. Thin-Walled Elastic Beams. Washington: National Science Foundation.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部