期刊文献+

Nagata rings

原文传递
导出
摘要 Let A be a commutative ring. For any set P of prime ideals of A, we define a new ring Na(A, P): the Nagata ring. This new ring has the particularity that we may transform certain properties relative to P to properties on the whole ring Na(A, P); some of these properties are: ascending chain condition, Krull dimension, Cohen-Macaulay, Gorenstein. Our main aim is to show that most of the above properties relative to a set of prime ideals P(i.e., local properties) determine and are determined by the same properties on the Nagata ring (i.e., global properties). In order to look for new applications, we show that this construction is functorial, and exhibits a functorial embedding from the localized category (A, P)-Mod into the module category Na(A,P)-Mod. Let A be a commutative ring. For any set P of prime ideals of A, we define a new ring Na(A, P): the Nagata ring. This new ring has the particularity that we may transform certain properties relative to P to properties on the whole ring Na(A, P); some of these properties are: ascending chain condition, Krull dimension, Cohen-Macaulay, Gorenstein. Our main aim is to show that most of the above properties relative to a set of prime ideals P(i.e., local properties) determine and are determined by the same properties on the Nagata ring (i.e., global properties). In order to look for new applications, we show that this construction is functorial, and exhibits a functorial embedding from the localized category (A, P)-Mod into the module category Na(A,P)-Mod.
作者 Pascual JARA
机构地区 Department of Algebra
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第1期91-110,共20页 中国高等学校学术文摘·数学(英文)
  • 相关文献

参考文献16

  • 1Albu T, Nastasescu C. Relative Finiteness in Module Theory. New York: Marcel Dekker, 1984.
  • 2Bueso J L, Jara P, Verschoren A. Duality, localization and completion. J Pure Appl Algebra, 1994, 94:127-141.
  • 3Bueso J L, Torrecillas B, Verschoren A. Local Cohomology and Localization. London: Pitman, 1991.
  • 4Cahen J P. Commutative torsion theory. Trans Amer Math Soc, 1973, 184:73-85.
  • 5Call F W. Torsion theoretic algebraic geometry. Queen's Papers in Pure and Applied Math, 82. Kingston: Queen's University, 1989.
  • 6Fontana M, Huckaba J, Papick I. Prfifer Domains. New York: Marcel Dekker, 1997.
  • 7Fontana M, Jara P, Santos E. Priifer ~-multiplication domains and semistar operations. J Algebra Appl, 2003, 2(1): 21-50.
  • 8Fontana M, Jara P, Santos E. Local-global properties for semistar operations. Comm Algebra, 2004, 32:3111-3137.
  • 9Fontana M, Loper A. An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations. In: Multiplicative Ideal Theory in Commutative Algebra. New York: Springer, 2006, 169-187.
  • 10Gilmer R. Multiplicative Ideal Theory. New York: Marcel Dekker, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部