期刊文献+

Functional Inequalities in Non-Archimedean Normed Spaces 被引量:1

Functional Inequalities in Non-Archimedean Normed Spaces
原文传递
导出
摘要 In this paper, we introduce an additive functional inequality and a quadratic functional inequality in normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in Banach spaces. Furthermore, we introduce an additive functional inequality and a quadratic functional inequality in non-Archimedean normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in non-Archimedean Banach spaces. In this paper, we introduce an additive functional inequality and a quadratic functional inequality in normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in Banach spaces. Furthermore, we introduce an additive functional inequality and a quadratic functional inequality in non-Archimedean normed spaces, and prove the Hyers-Ulam stability of the functional inequalities in non-Archimedean Banach spaces.
作者 Choonkil PARK
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第3期353-366,共14页 数学学报(英文版)
基金 Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(Grant No.NRF-2012R1A1A2004299)
关键词 Jordan-yon Neumann functional equation non-Archimedean normed space Banachspace Hyers-Ulam stability functional inequality Jordan-yon Neumann functional equation, non-Archimedean normed space, Banachspace, Hyers-Ulam stability, functional inequality
  • 相关文献

参考文献17

  • 1Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66 0950).
  • 2Cholewa, P. W.: Remarks on the stability of functional equations. Aequationes Math., 27, 76-86 (1984).
  • 3Cieplifiski, K.: Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey. Ann. Funct. Anal., 3, 151-164 (2012).
  • 4Eshaghi Gordji, M., Khodaei, H., Khodabakhsh, R., et al.: Fixed points and quadratic equations connected with homomorphisms and derivations on non-Archimedean algebras. Adv. Difference Equ., 2012(128), 10 pp. (2012).
  • 5Feehner, W.: Stability of a functional inequalities associated with the Jordan-voa Neumann functional equation. Aequationes Math., 71, 149-161 (2006).
  • 6Ggvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. Y. Math. Anal. Appl., 184, 431-43 (1994).
  • 7Gildnyi, A.: Eine zur Parallelogrammgleichung iiquivalente Ungleichung. Aequationes Math., 62, 303-309 (2001).
  • 8Gildnyi, A.: On a problem by K. Nikodem. Math. Inequal. Appl., 5, 707 710 (2002).
  • 9Hyers, D. H.: On the stability of the linear functional equation. Proc. Natl. Aead. Sci. U.S.A., 27, 222-224 (1941).
  • 10Moslehian, M. S., Rassias, Th. M.: Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discrete Math., 1, 325-334 (2007).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部