摘要
Let G =(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For two distinct vertices x and y of a graph G, let RG{x, y} denote the set of vertices z such that the distance from x to z is not equa l to the distance from y to z in G. For a function g defined on V(G) and for U V(G), let g(U) =∑s∈Ug(s). A real-valued function g : V(G) → [0, 1] is a resolving function of G if g(RG{x, y}) ≥ 1 for any two distinct vertices x, y ∈ V(G). The fractional metric dimension dimf(G)of a graph G is min{g(V(G)) : g is a resolving function of G}. Let G1 and G2 be disjoint copies of a graph G, and let σ : V(G1) → V(G2) be a bijection. Then, a permutation graph Gσ =(V, E) has the vertex set V = V(G1) ∪ V(G2) and the edge set E = E(G1) ∪ E(G2) ∪ {uv | v = σ(u)}. First,we determine dimf(T) for any tree T. We show that 1 〈 dimf(Gσ) ≤1/2(|V(G)| + |S(G)|) for any connected graph G of order at least 3, where S(G) denotes the set of support vertices of G. We also show that, for any ε 〉 0, there exists a permutation graph Gσ such that dimf(Gσ)- 1 〈 ε. We give examples showing that neither is there a function h1 such that dimf(G) 〈 h1(dimf(Gσ)) for all pairs(G, σ), nor is there a function h2 such that h2(dimf(G)) 〉 dimf(Gσ) for all pairs(G, σ). Furthermore,we investigate dimf(Gσ) when G is a complete k-partite graph or a cycle.
Let G =(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For two distinct vertices x and y of a graph G, let RG{x, y} denote the set of vertices z such that the distance from x to z is not equa l to the distance from y to z in G. For a function g defined on V(G) and for U V(G), let g(U) =∑s∈Ug(s). A real-valued function g : V(G) → [0, 1] is a resolving function of G if g(RG{x, y}) ≥ 1 for any two distinct vertices x, y ∈ V(G). The fractional metric dimension dimf(G)of a graph G is min{g(V(G)) : g is a resolving function of G}. Let G1 and G2 be disjoint copies of a graph G, and let σ : V(G1) → V(G2) be a bijection. Then, a permutation graph Gσ =(V, E) has the vertex set V = V(G1) ∪ V(G2) and the edge set E = E(G1) ∪ E(G2) ∪ {uv | v = σ(u)}. First,we determine dimf(T) for any tree T. We show that 1 〈 dimf(Gσ) ≤1/2(|V(G)| + |S(G)|) for any connected graph G of order at least 3, where S(G) denotes the set of support vertices of G. We also show that, for any ε 〉 0, there exists a permutation graph Gσ such that dimf(Gσ)- 1 〈 ε. We give examples showing that neither is there a function h1 such that dimf(G) 〈 h1(dimf(Gσ)) for all pairs(G, σ), nor is there a function h2 such that h2(dimf(G)) 〉 dimf(Gσ) for all pairs(G, σ). Furthermore,we investigate dimf(Gσ) when G is a complete k-partite graph or a cycle.