期刊文献+

The Fractional Metric Dimension of Permutation Graphs

The Fractional Metric Dimension of Permutation Graphs
原文传递
导出
摘要 Let G =(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For two distinct vertices x and y of a graph G, let RG{x, y} denote the set of vertices z such that the distance from x to z is not equa l to the distance from y to z in G. For a function g defined on V(G) and for U V(G), let g(U) =∑s∈Ug(s). A real-valued function g : V(G) → [0, 1] is a resolving function of G if g(RG{x, y}) ≥ 1 for any two distinct vertices x, y ∈ V(G). The fractional metric dimension dimf(G)of a graph G is min{g(V(G)) : g is a resolving function of G}. Let G1 and G2 be disjoint copies of a graph G, and let σ : V(G1) → V(G2) be a bijection. Then, a permutation graph Gσ =(V, E) has the vertex set V = V(G1) ∪ V(G2) and the edge set E = E(G1) ∪ E(G2) ∪ {uv | v = σ(u)}. First,we determine dimf(T) for any tree T. We show that 1 〈 dimf(Gσ) ≤1/2(|V(G)| + |S(G)|) for any connected graph G of order at least 3, where S(G) denotes the set of support vertices of G. We also show that, for any ε 〉 0, there exists a permutation graph Gσ such that dimf(Gσ)- 1 〈 ε. We give examples showing that neither is there a function h1 such that dimf(G) 〈 h1(dimf(Gσ)) for all pairs(G, σ), nor is there a function h2 such that h2(dimf(G)) 〉 dimf(Gσ) for all pairs(G, σ). Furthermore,we investigate dimf(Gσ) when G is a complete k-partite graph or a cycle. Let G =(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For two distinct vertices x and y of a graph G, let RG{x, y} denote the set of vertices z such that the distance from x to z is not equa l to the distance from y to z in G. For a function g defined on V(G) and for U V(G), let g(U) =∑s∈Ug(s). A real-valued function g : V(G) → [0, 1] is a resolving function of G if g(RG{x, y}) ≥ 1 for any two distinct vertices x, y ∈ V(G). The fractional metric dimension dimf(G)of a graph G is min{g(V(G)) : g is a resolving function of G}. Let G1 and G2 be disjoint copies of a graph G, and let σ : V(G1) → V(G2) be a bijection. Then, a permutation graph Gσ =(V, E) has the vertex set V = V(G1) ∪ V(G2) and the edge set E = E(G1) ∪ E(G2) ∪ {uv | v = σ(u)}. First,we determine dimf(T) for any tree T. We show that 1 〈 dimf(Gσ) ≤1/2(|V(G)| + |S(G)|) for any connected graph G of order at least 3, where S(G) denotes the set of support vertices of G. We also show that, for any ε 〉 0, there exists a permutation graph Gσ such that dimf(Gσ)- 1 〈 ε. We give examples showing that neither is there a function h1 such that dimf(G) 〈 h1(dimf(Gσ)) for all pairs(G, σ), nor is there a function h2 such that h2(dimf(G)) 〉 dimf(Gσ) for all pairs(G, σ). Furthermore,we investigate dimf(Gσ) when G is a complete k-partite graph or a cycle.
作者 Eunjeong YI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第3期367-382,共16页 数学学报(英文版)
关键词 Fractional metric dimension permutation graph TREE complete k-partite graph CYCLE Fractional metric dimension, permutation graph, tree, complete k-partite graph, cycle
  • 相关文献

参考文献22

  • 1Arumugam, S., Mathew, V (2012) Arumugam, S., Mathew, V. Appl., 5, 1350037 (2013).
  • 2Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs. Discrete Math. Algorithms Appl., 5, 1350037 (2013).
  • 3Balbuena, C., Marcote, X., Garcia-Vizquez, P.: On restricted connectivities of permutation graphs. Net- works, 45, 113-118 (2005).
  • 4Beerliova, Z., Eberhard, F., Erlebach, T., et al.: Network discovery and verification. IEEE J. Sel. Areas Commun., 24, 2168-2181 (2006).
  • 5Chartrand, G., Eroh, L., Johnson, M. A., et al.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105, 99-113 (2000).
  • 6Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poineare (Sect. B), 3,433-438 (1967).
  • 7ChvStal, V.: Mastermind. Combinatorica, 3, 325-329 (1983).
  • 8Currie, J., Oellermann, O. R.: The metric dimension and metric independence of a graph. J. Combin Math. Combin. Comput., 39, 157-167 (2001).
  • 9Fehr, M., GosseIin, S., Oellermann, O. R.: The metric dimension of Cyley digraphs. Discrete Math., 306 31-41 (2006).
  • 10Feng, M., Lv, B., Wang, K.: On the fractional metric dimension of graphs. Discrete Appl. Math., 170 55-63 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部