期刊文献+

Expansions for the Distribution and the Maximum from Distributions with an Asymptotically Gamma Tail When a Trend Is Present

Expansions for the Distribution and the Maximum from Distributions with an Asymptotically Gamma Tail When a Trend Is Present
原文传递
导出
摘要 We give expansions about the Gumbel distribution in inverse powers of n and logn for Mn, the maximum of a sample size n or n + 1 when the j-th observation is μ(j/n) + ej, μ is any smooth trend flmction and the residuals {ej} are independent and identically distributed with P(e〉r)≈exp(-δx)x^do ∑k=1 ∞ckx^-kβ as -x→∞. We illustrate practical value of the expansions using simulated data sets. We give expansions about the Gumbel distribution in inverse powers of n and logn for Mn, the maximum of a sample size n or n + 1 when the j-th observation is μ(j/n) + ej, μ is any smooth trend flmction and the residuals {ej} are independent and identically distributed with P(e〉r)≈exp(-δx)x^do ∑k=1 ∞ckx^-kβ as -x→∞. We illustrate practical value of the expansions using simulated data sets.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第3期526-542,共17页 数学学报(英文版)
关键词 Bell polynomials EXPANSIONS exponential and gamma tails Gumbel MAXIMUM TREND Bell polynomials, expansions, exponential and gamma tails, Gumbel, maximum, trend
  • 相关文献

参考文献31

  • 1Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions, National Bureau of Standards, Washington D.C., 1964.
  • 2Aza'is, J. -M., Cierco-Ayrolles, C., Croquette, A.: Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary Gaussian process. ESAIM: Probab. Statist., 3, 107 -129 (1999).
  • 3Azais, J. -M., Delmas, C.: Asymptotic expansions for the distribution of the maximum of Gaussian random fields. Extremes, 5, 181-212 (2003).
  • 4Barbe, Ph., McCormick, W. P.: Second-order expansion for the maximum of some stationary Gaussian sequences. Stochastic Process. Appl., 110, 315 -342 (2004).
  • 5Barbe, Ph., McCormick, W. P., Zhang, C.: Tail expansions for the distribution of the maximum of a random walk with negative drift and regularly varying increments. Stochastic Process. Appl. 117, 1835- 1847 (2007).
  • 6Comtet, L.: Advanced Combinatorics, Reidel, Dordrecht, 1974.
  • 7Delmas, C.: An asymptotic expansion for the distribution of the maximum of a class of Gaussian fields. Comptes Rendus de l'Acaddmie des Sciences. Sdrie I. Mathmatique, 327, 393-397 (1998).
  • 8Feng, S., Nadarajah, S., Hu, Q.: Modeling annual extreme precipitation in China using the generalized extreme value distribution. J. Meteorological Soc. Japan, 85, 599-613 (2007).
  • 9Fujikoshi, Y.: Error bounds for asymptotic expansions of the maximums of the multivariate t and F- variables with common denominator. Hiroshima Math. J., 19, 319-327 (1989).
  • 10Grady, A. M.: A higher order expansion for the joint density of the sum and the maximum with applications to the estimation of climatological trends. Ph.D. Thesis, University of North Carolina at Chapel Hill, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部