期刊文献+

硅量子点双势垒存储结构及其编程机制的研究

Study of structure of Si QDs memory with double barrier and its programming mechanism
原文传递
导出
摘要 采用等离子体化学气相沉积(PECVD)及热退火方法制备了含硅量子点的Si Cx薄膜.透射电子显微镜(TEM)观测表明Si Cx薄膜中生长了大量硅量子点.制备了含Si Cx薄膜包裹硅量子点的双势垒存储器结构.TEM观测表明,采用上述工艺成功制备了Si3N4/Si Cx薄膜/Si-QDs/Si Cx薄膜/Si O2双势垒结构的存储器结构.利用硅量子点的库伦阻塞效应及量子限域效应,从理论上分析了双势垒硅量子点存储器的编程机制,建立了双势垒存储结构阈值电压漂移模型,模拟仿真表明双势垒存储器的阈值电压漂移要大于单势垒存储器,编程速度更快.存储结构C-V特性测试表明,样品在扫描栅压为±12 V时有10 V左右的存储窗口,证明双势垒存储结构具有良好载流子存储效应. SiCx thin films with silicon quantum dots(QDs) were prepared by plasma enhanced chemical vapor deposition(PECVD) and thermal annealing. Transmission electron microscopy(TEM) observation shows that a large number of silicon QDs growing in Si Cx films. Memory structure with double barrier which consist of Si Cx thin films embedded in silicon QDs were prepared. TEM observations shows that the above process successfully prepared Si3N4/Si Cx/Si-QDs/Si Cx/Si O2 double-barrier memory structure. The programming mechanism of double-barrier silicon quantum dot memory was analyzed theoretically in consideration of coulomb blockade effects and quantum confinement effect of silicon quantum QDs. The threshold voltage shift model of double-barrier structure was established. Simulation of that mode shows that threshold voltage shift of double barrier memory is larger than a single barrier memory and double-barrier memory programming faster too. C-V characteristic tests of storage structure shows that double-barrier structure has good storage carrier storage effect, getting about 10 V's the storage window when the scan voltage is ±12 V.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2015年第1期62-67,共6页 Scientia Sinica(Technologica)
基金 教育部支撑技术计划(批准号:62501040202) 国家自然科学基金(批准号:51472096) 中央高校基础科研基金(批准号:2014NY004) 深圳市战略性新兴产业发展专项资金(批准号:JCYJ20120831110939098)资助项目
关键词 双势垒 硅量子点 编程机制 存储器 double barrier silicon QDs programming mechanism memory
  • 相关文献

参考文献23

  • 1Tiwari S, Rana F, Hanafi H, et al. A silicon based memory. Appl Phys Lett, 1996, 68:1377-1379.
  • 2Photopoulos P, Nassiopoulou A G, Kouvatsos D N, et al. Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices. Appl Phys Lett, 2000, 76:3588-3595.
  • 3Waiters R J, Kik P G, Casperson J D, et al. Silicon optical nanocrystal memory. 2004, Appl Phys Lett, 85:2622-2630.
  • 4Muralidhar R, Steimle R F . An embedded silicon nanocrystal nonvolatile memory for the 90 nm technology node operating at 6 V. The IEEE International Conference on Integrated Circuit Design and Technology, 2004.34-35.
  • 5Kimi I, Hans S, Han K, et al. Room temperature single electron effects in a Si nano-crystal memory. IEEE Electronic Device Lett, 1999, 20: 630-631.
  • 6Hanf H, Tiwari S, Khan I. Fast and long retention-time nanocrystal memory. IEEE Trans Electron Device, 1996, 43:1556-1557.
  • 7Shcherbyna L, Torchynska T. Si quantum dot structures and their applications. Physica E, 2013, 51:65-70.
  • 8Prakaipetch P, Kazunori I, Yukiharu U, et al. Effect of SiO2 tunnel oxide thickness on electron tunneling mechanism in Si nanocrystal dots floating-gate memories. Jpn J Appl Phys, 2006, 45:3997-3999.
  • 9Kouvatsos D N, Ioannou S V, Nassiopoulou A G. Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing. Appl Phys Lett, 2003, 82:397-399.
  • 10Liu Y, Chen T P, Ng C Y, et al. Influence of Si-nanocrystal distribution in the oxide on the charging behavior of MOS structures. IEEE Trans Electron Device, 2006, 53:914-917.

二级参考文献22

  • 1郭荣辉,赵正平,郝跃,刘玉贵,武一宾,吕苗.多岛单电子晶体管的实现及其源漏特性分析[J].物理学报,2005,54(4):1804-1808. 被引量:6
  • 2TIWARI S,RANAF,CHANK,etal.Single charge and confinement effects in nano-crystal memories [J].Appl Phys Lett,1996,69(9):1232-1234.
  • 3SHI Y,SAITO K,ISHIKUTO H,et al.Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals [J].J Appl Phys,1998,84(4):2358-2360.
  • 4KING Y C,KING K J,HU C.Charge-trap memory device fabricated by oxidation of Si1-x Gex[J].IEEE Trans Electron Devices,2001,48(4):696-700.
  • 5MOLASG,SALVOBD,GHIBAUDO G,et al.Single electron effects and structural effects in ultrascaled silicon nanocrystal floating-gate memories [J].IEEE Trans Nanotech,2004,3(1):42-48.
  • 6TIWARI S,RANAF,HANAFI H,etal.Asilicon nanocrystals based memory[J].Appl Phys Lett,1996,68(10):1377-1379.
  • 7KIMI,HANS,HANK,etal.Room tempereature single electron effects in a Si nano-crystal memory[J].IEEE Electron Device Lett,1999,20(12):630-631.
  • 8LAMMERS D.Motorola speeds the move to nanocrystal flash [EB/OL].http://www.eetimes.com/showArticle.jhtml? articleID =18310381,2003-12-08/2004-10-01.
  • 9MOKHOFF N.Crystals line up in IBM flash chip [EB/OL].http://www.eetimes.com/showArticle.jhtml? artideID = 18310384,2003-12-08/2004-10-01.
  • 10STRATEGIES S.Intel enlists Nanosys to probe nano-memory research[EB/OL].http://www.eetimes.oorn/showArticle.jhtml? articleID=18310664,2004-01-15/2004-10-01.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部