期刊文献+

Occurance and control of manganese in a large scale water treatment plant

Occurance and control of manganese in a large scale water treatment plant
原文传递
导出
摘要 The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentration and pH value in the bottom of reservoir results in the increasing release of Mn from sediment to source water. Manganese concentration increased from 0.1 to 0.4 mg. L i under the condition that DO concentration decreased from 12.0 to 2.0mg.LI in raw water. The different water treatment processes exhibited different efficiency on manganese removal. The processes with recycling of the suspended sludge, low elevation velocity in settling tank and slow filter rate, will benefit the manganese removal. During a high release of manganese in raw water, traditional coagulation-sedimentation and filtration could not completely remove Mn, although granular activated carbon filtration (GAC) had been applied. At that case, preoxidation with chlorine or potassium permanganate (KMnO4) was necessary to address the high manganese concentration. The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentration and pH value in the bottom of reservoir results in the increasing release of Mn from sediment to source water. Manganese concentration increased from 0.1 to 0.4 mg. L i under the condition that DO concentration decreased from 12.0 to 2.0mg.LI in raw water. The different water treatment processes exhibited different efficiency on manganese removal. The processes with recycling of the suspended sludge, low elevation velocity in settling tank and slow filter rate, will benefit the manganese removal. During a high release of manganese in raw water, traditional coagulation-sedimentation and filtration could not completely remove Mn, although granular activated carbon filtration (GAC) had been applied. At that case, preoxidation with chlorine or potassium permanganate (KMnO4) was necessary to address the high manganese concentration.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第1期66-72,共7页 环境科学与工程前沿(英文)
关键词 manganese release dissolved oxygen settling filtration PRE-OXIDATION manganese release, dissolved oxygen, settling filtration, pre-oxidation

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部