期刊文献+

The hierarchy quorum sensing networ in Pseudomonas aeruginosa 被引量:76

The hierarchy quorum sensing networ in Pseudomonas aeruginosa
原文传递
导出
摘要 Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradi- cate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacte- rial population changes but also could react to envi- ronmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics. Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradi- cate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacte- rial population changes but also could react to envi- ronmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.
出处 《Protein & Cell》 SCIE CAS CSCD 2015年第1期26-41,共16页 蛋白质与细胞(英文版)
基金 This work was funded by the Biomedical Research Council, Agency for Science, Technology and Research (A'STAR), Singapore, and by the National Natural Science Foundation of China (Grant No. 31330002). We apologize to the scientists who made contributionsto the field, but their works have not been cited due to space limitations.
关键词 quorum sensing IQS PQS LAS rhl Pseudomonas aeruginosa VIRULENCE environmental factors quorum sensing, IQS, PQS, las, rhl,Pseudomonas aeruginosa, virulence, environmental factors
  • 相关文献

同被引文献350

引证文献76

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部