期刊文献+

基于Schur收敛性条件的扰动特征泛函凸组合模型

Turbulence Characteristics Functional Convex Combination Model Based on Schur Convergence Condition
下载PDF
导出
摘要 研究Schur收敛性条件的扰动特征泛函凸组合模型的收敛性和稳定性,是实现对特征灵敏的前馈网络系统连续性和非线性控制的关键理论依据。传统分析方法采用的模糊免疫时滞环节进行完全跟踪补偿,构造李雅普诺夫泛函线性矩阵不等式,进行非线性凸组合模型构建,但模型因扰动特征泛函收敛效果不好。构建了基于Schur收敛性条件的扰动特征泛函凸组合模型,求解平均扰动特征泛函的平均互信息量,设定扰动特征连接权值下的系统函数,通过实时自适应学习算法对被控对象进行亏损特征分解,得到Schur收敛性条件,对凸组合模型的收敛性和渐进稳定性进行证明。最后进行数值算例分析,得出构建的凸组合模型收敛性和渐进稳定性较好,计算精度精确,寻优过程可靠。 The condition of Schur convergence of the perturbation characteristic functional convex combination model convergence and stability is researched, it is to achieve the characteristics of sensitive feed forward control network system continuity and nonlinear critical theory. Fuzzy immune time delay is used in the traditional analysis method with full compensation, Lyapunov functional linear matrix inequality is constructed, the nonlinear convex combination model is obtained, but the model due to disturbances of functional, convergence effect is not good. Construction of the disturbance characteristic functional convex combination model of Schur based on the average convergence conditions is obtained, calculate the average disturbance characteristic functional mutual information, The disturbance characteristics connection system function weights is set, the adaptive learning algorithm is used for eigenvalue decomposition, the Schur convergence condition is obtained, the convergence and asymptotic stability property of convex combination model is proved. Finally, a numerical example analysis is taken, it concludes that the construction of the convex has better convergence and asymptotic stability,the calculation accuracy is improved, and the optimization process is reliable.
作者 庞通
出处 《科技通报》 北大核心 2015年第2期4-6,共3页 Bulletin of Science and Technology
关键词 收敛 凸组合模型 扰动特征 convergence convex combination model disturbance characteristics
  • 相关文献

参考文献5

二级参考文献81

  • 1年晓红,杨胜跃,郭丽梅.耦合R iccati不等式组解的局部优化算法及其在微分对策中的应用[J].系统工程,2005,23(6):105-109. 被引量:5
  • 2王欣,史忠科.高阶Riccati方程加权阵选择方法及其在飞控中的应用[J].航空学报,2005,26(3):328-333. 被引量:5
  • 3张贤达.矩阵分析与应用.北京:清华大学出版社,2006:105-113.
  • 4Mirkovic J, Reiher P. A Taxonomy of DDoS attack and DDoS defense mechanisms [J] ACM SIG- COMM Computer Communications Review, 2004, 34(2) : 39-53.
  • 5Lawniczak A T, Wu H, Di Stefan B N. Detection of anomalous packet traffic via entropy[C] // Proceed ings of the 22nd IEEE Canadian Conference on Elec trical and Computer Engineering, Canada, 2009: 137-141.
  • 6Lee W, Xiang D. Information theoretic measures foranomaly detection [C] /// Proceedings of the IEEE Symposium on Security and Privacy, Washington, 2001:130-147.
  • 7Feinstein I., Sehnackenberg D, Balupari R, et al. Statistical approaches to DDoS attack detection and response[C]// Proceedings of the DARPA Informa- tion Survivability Conference and Exposition, Washington, 2003: 303-314.
  • 8Lall A, Sekar V, Xu J,et al. Data streaming algo rithms for estimating entropy of network traffic[J] ACM SIGMETRICS Performance Evaluation Re view, 2006, 34(1): 145-156.
  • 9I.akhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions[J]. Computer Communication Review, 2005, 35(4): 217-228.
  • 10Li K, Zhou W L, Yu S, et al. Effective DDoS at tacks detection using generalized entropy metrie[C] //Proceedings of the 9th International Conference on Algorithms and Architectures for Parallel Process ing, Taiwan, 2009:266-280.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部