期刊文献+

采用奇异值分解移动学习云计算静态重删系统

Cloud Computing Static Deduplication Data Removing System Based on Singular Value Decomposition and Mobile Learning
下载PDF
导出
摘要 在云存储服务中,为使用户可以随时验证存储在云存储服务器上数据的完整性,需要对云计算数据进行移动学习,在移动学习过程中,产生大量的重复数据。需要设计云计算静态重删系统,对重复数据有效及时删除。传统方法采用虚拟化云平台分类层次重删模型,需要修改内核代码或者以模块的形式动态植入内核代码,重删效果不好。本文提出一种基于奇异值分解移动学习的云计算静态重删系统设计方案,进行云计算存储系统设计与重删数据特征分析,对云计算静态重复数据的尺度伸缩分解,把重复数据宽带互模糊度函数映射为一个检测统计量特征分解问题,构建一个参数未知多重假设检验,对云计算静态重复数据进行奇异值尺度伸缩分解,对分解后的奇异值特征进行状态空间重组和移动学习,得到重删系统模型改进。仿真结果表明,该算法对云计算静态重复数据检测性能较高,重删性能优越,抗干扰能力强,具有较好的应用前景。 In the cloud storage service, the integrity of data and cloud storage server is important for users, mobile learning on cloud computing data is taken, in a mobile learning process, it produces large amounts of duplicate data. Design of cloud computing static duplicate data removing system is researched. The traditional method uses virtual cloud platform classification hierarchy removing model, it needs to modify the kernel code or dynamic implant kernel code module, the removing effect is not good. A cloud computing static deduplication data removing system is proposed based on singular value decomposition and mobile learning, the data characteristics are analyzed, data storage system is designed. Cloud computing scale static data decomposition is taken, data broadband cross ambiguity function is mapped as a test statistic eigenvalue decomposition problem. A parameter unknown multiple hypothesis testing is constructed, the singular value decomposition is taken in scale of cloud computing data. The singular value features of state space are reconstructed, and mobile learning is taken after decomposition. The simulation results show that the algorithm has high detection performance of deduplication data, it has strong anti-interference ability, and has better application prospect.
作者 范颖
出处 《科技通报》 北大核心 2015年第2期55-57,共3页 Bulletin of Science and Technology
基金 2012年河南省信息技术教育研究规划项目(教信息[2012]1151号 编号:ITE12104)阶段性研究成果 2014年度河南省教育厅科学技术研究重点项目(14A520084)阶段性研究成果
关键词 奇异值分解 移动学习 云计算 重复数据 singular value decomposition mobile learning cloud computing deduplication data
  • 相关文献

参考文献7

二级参考文献162

  • 1王东升,金伟良,龚顺风.运用层次分析法鉴定混凝土桥梁健康状况[J].科技通报,2005,21(1):41-44. 被引量:10
  • 2董欢庆,李战怀,林伟.RAID-VCR:一种能够承受三个磁盘故障的RAID结构[J].计算机学报,2006,29(5):792-800. 被引量:10
  • 3Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 4Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 5Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 6You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 7Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.
  • 8Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390.
  • 9Rabin MO.Fingerprinting by random polynomials.Technical Report,CRCT TR-15-81,Harvard University,1981.
  • 10Rivest R.The MD5 message-digest algorithm.1992.http://www.python.org/doc/current/lib/module-md5.html.

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部