期刊文献+

基于多层小波变换的压缩感知图像快速复原算法研究 被引量:3

Research of fast compressed sensing image recovery algorithm based on multi-wave transform
下载PDF
导出
摘要 为了能够有效地改善低码率压缩图像的主客观质量,减少图像复原所需观测数据量,节约存储空间和计算量,提出了一种基于多层小波变换的压缩感知图像快速复原算法。该算法将压缩感知理论中的信号重构方法运用于图像复原领域,建立基于压缩感知的图像复原模型,通过少量低维投影空间的测量值并根据信号稀疏表示的先验知识对信号进行精确或高概率的复原。通过Matlab进行实验仿真,结果表明,该算法与传统的图像复原算法相比,通过相同的观测数据量可以获得更高的PSNR,复原效率也得到了提高。 In order to effectively improve both subjective and objective qualities of the compressed images with low bit rate, to reduce the data for image recovery and to save storage space and computational complexity, a fast compressed sensing image recovery algorithm based on multi-wave transform is proposed in this paper. The algorithm applies compressed sensing theory to the image recovery field, establishes recovery model and reconstructs signal accurately and efficiently from small amounts of linear measurements much fewer than its actual dimension using sparse priors of signal.Matlab is adopted for simulation. The experimental results show that the algorithm, compared with other typical reconstruction algorithm, can get higher PSNR and improve recovery efficiency when the observation data are similar.
出处 《电子设计工程》 2015年第3期176-178,共3页 Electronic Design Engineering
基金 上海海事大学科研基金项目(20120108)
关键词 压缩感知 小波变换 图像复原 信号重构 MATLAB compressed sensing wavelet transform image recovery signal reconstruction Matlab
  • 相关文献

参考文献1

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部