期刊文献+

全覆盖粒计算模型的粒化、知识逼近及其算子性质研究 被引量:3

Granulation,knowledge approximation and properties of operators of the full covering GrC model
下载PDF
导出
摘要 粒计算(GrC)作为处理不精确、不确定、不完备信息的重要工具,其基本思想是粒化、粒的运算和粒运算结果的融合.部分覆盖是粒计算理论框架中的一种重要模型,在电脑安全、搜索引擎和客户评估等领域具有潜在应用价值.全覆盖是部分覆盖的一种特例,已有的研究是从粗糙集理论的角度开展的,这是一种一般拓扑观念下的全覆盖.本文在pre-topology理论的框架下,从粒化、知识逼近和算子性质三个方面,首先介绍了邻域系统的相关定义,并在邻域系统基础之上提出了粒、全覆盖、全覆盖近似空间的概念;然后在全覆盖近似空间中利用已定义的粒重新诠释了一般拓扑中的内点和闭包算子,对全覆盖近似空间中的任意对象进行知识逼近,并用算例来说明;最后探究了全覆盖粒计算模型中这对逼近算子满足的基本性质,并证明了所提性质,为以后设计基于全覆盖粒计算模型的特征选择算法提供了理论基础. Granular computing(GrC)is a powerful tool to handle imprecise,uncertain and incomplete information.Granulation of problems,computing of granules and integration of the results to granulated problems constitute its basic ideas.Partial covering is a global model in GrC,which has the potential application values in the research fields such as computer security,search engine and customer evaluation.As a special case of the partial covering(the global GrC model),the full covering had been studied from the perspective of the rough sets,which is depicted under the framework of the general topology.This article developed the granulation,knowledge approximation and the properties of approximation operators of the full covering from the perspective of GrC under the framework of pre-topology theory.Firstly,the concepts of the neighborhood system,the granule and the full covering GrC model were presented,and the full covering approximation space was also defined,and then the neighborhood system of the full cover-ing GrC model was regarded as a basic granule.Secondly,followed by the concepts of interior and closure operators in the pre-topology space,the interior and closure operators of the full covering GrC model were defined by those basic granules,which could be used to approximate any object in the full covering approximation space,and some examples were also illustrated.Finally,the fundamental properties of those two operators were explored under the full covering approximation space,such as monotone and duality,and the proofs were also demonstrated for the proposed theorems and corollaries.All the work was the foundation for axiomatic systems of the operators in the full covering approximation space,and the feature selection algorithm based on the full covering GrC model is the next research in the future.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期105-110,共6页 Journal of Nanjing University(Natural Science)
基金 山西省留学回国人员科技活动择优资助项目(2013年度) 山西省回国留学人员科研资助项目(2013-033) 山西省自然科学基金(2014011018-2)
关键词 粒计算 全覆盖 邻域系统 内点算子 闭包算子 granular computing full covering neighborhood system interior operator closure operator
  • 相关文献

参考文献23

  • 1Hobbs J R. Granularity. In: Proceedings of the 9'h International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Ine, 1985:432-435.
  • 2王丽娟,杨习贝,杨静宇,吴陈.一种新的不完备多粒度粗糙集[J].南京大学学报(自然科学版),2012,48(4):436-444. 被引量:7
  • 3Lin T Y. Uncertainty and knowledge theories new era in granular computing. In.. 2012 IEEE In ternational Conference on Granular Computing, IEEE,2012:2-11.
  • 4Zhu W. Relationship between generalized rough sets based on binary relation and covering. Information Sciences, 2009,179 (3) : 210- 225.
  • 5Zhu W,Wang F Y. Reduction and axiomization of covering generalized rough sets. Information Sciences, 2003,152,217 - 230.
  • 6Qian Y H,Liang J Y,Yao Y Y,etal. MGRS:A multi-granulation rough set. Information Sciences, 2010,180(6) : 949-970.
  • 7张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:207
  • 8Lin T Y. Granular computing: Practices, theories, and future directions. Encyclopedia of Complexity and Systems Science,2008:4339-4355.
  • 9Zadeh L. A. Fuzzy logic: computing with words IEEE Transactions on Fuzzy Systems, 1996(4) I03-IiI.
  • 10Yao Y Y. A partition model of granular computing. LNCS Transactions on Rough Sets, Springer, 2004(1) :232-253.

二级参考文献80

共引文献287

同被引文献30

  • 1于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 2Tsau.Young Lin.Granular Computing on Partitions, Coverings and Neighborhood Systems[J].南昌工程学院学报,2006,25(2):1-7. 被引量:1
  • 3胡军,张闽.覆盖近似空间的约简理论[J].计算机工程与应用,2007,43(28):86-88. 被引量:5
  • 4Lin T Y. Granular computing: practices, theories, and future direc- tions [ M ]//Encyclopedia of Complexity and Systems Science. Berlin : Springer,2008:4339-4355.
  • 5Zakowski W. Approximations in the space (U, H) [J]. Demonstra- tio Mathematica,1983,16(40) :761-769.
  • 6Zhu W, Wang Feiyue. The fourth type of covering-based rough sets [ J]. Information Sciences,2012,203:80-92.
  • 7Tsang E C C, Chen Degang, Yeung D S. Approximations and reducts with covering generalized rough sets[ J]. Computers & Mathematics with Applications ,2008,56 ( 1 ) :279-289.
  • 8Lin T Y, Syau Y R. Granular mathematics foundation and current state[ C ]//Proc of IEEE International Conference on Granular Com- puting. [ S. 1. ] :IEEE Press,2011:4-12.
  • 9Bonikowski Z, Bryniarski E, Wybraniec S U. Extensions and inten- tions in the rough set theory [ J]. Information Sciences, 1998,107 (1) :149-167.
  • 10Li Fei, Yin Yunqiang. Approaches to knowledge reduction of cove- ring decision systems based on information theory [ J ]. Information Sciences ,2009,179 ( 11 ) : 1694-1704.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部