期刊文献+

分数阶嵌入的广义多重集典型相关分析

Fractional-order embedding generalized multiset canonical correlation analysis
下载PDF
导出
摘要 随着数据处理方式以及描述角度的不同,同一模式总是能够获得多种不同的特征表示.由于这些特征表示总是反映了同一模式的不同特性或视角,因此,对其进行有效地抽取与融合后,不仅可以保留参与抽取的多组特征的有效鉴别信息,还可以在一定程度上消除特征间的冗余信息,降低识别算法的复杂度,对模式分类来说无疑具有重要的实际意义.由于传统的维数约减方法,如主成分分析(PCA)与线性鉴别分析(LDA),主要针对模式的一组特征进行处理,并不适合对多表示数据进行融合与特征抽取,因此,本文以多表示数据为研究对象,深入研究了多重集典型相关分析的相关理论与算法,采用分数阶思想对组内与组间样本协方差的特征值和奇异值进行重新估计,然后建立分数阶组内与组间散布矩阵,同时引入监督信息,构建了分数阶嵌入的多重集典型相关分析(FEGMCCA)理论框架. Due to different data processing and descriptions,the same objects usually have multiple representations from different spaces(views).These multiple representations could be not only from different feature vector spaces,but also from different graph spaces.Since multiple feature representations always reflect different characteristics or views of the same patterns,extracting features from them can not only obtain the effectively discriminative information,but also eliminate the redundant information to a certain extent in each feature representation.Furthermore,the complexity of classifiers can be reduced much by using these extracted features.Therefore,the feature extraction of multi-representation data is undoubtablely a very necessary and fundamental problem for recognition tasks.Since traditional feature extraction or dimensionality reduction methods,e.g.,principle component analysis(PCA)and linear discriminant analysis(LDA),etc.,are mainly based on single representation data,they are not suitable to be applied to the feature extraction of multi-representation data.In this dissertation,we focus on studying this problem basedmultiset canonical correlation analysis(MCCA).We use the idea of fractional order to respectively correct the eigenvalues and singular values in the corresponding sample covariance matrices,and then construct fractional-order within-set and between-set scatter matrices which can obviously alleviate the problem of the deviation.On this basis,we introduce supervision information and a new approach is proposed called fractional-order embedding generalized multiset canonical correlation analysis(FEGMCCA).
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期118-124,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61273251)
关键词 模式识别 特征抽取 维数约减 多重集典型相关分析 分数阶 pattern recognition feature extraction dimensionality reduction multiset canonical correlation analysis fractional-order embedding
  • 相关文献

参考文献17

  • 1Camastra F, Vinciarelli A. Estimating the intrinsic dimension of data with a fractal based method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 ( 10 ): 1404-1407.
  • 2He X, Ji M, Zhang C, et al. A variance minimization criterion to feature selection using laplacian regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10) :2013-2025.
  • 3俞亚君,霍静,史颖欢,高阳,张剡.SSXCS:半监督学习分类系统[J].南京大学学报(自然科学版),2013,49(5):611-618. 被引量:7
  • 4宋海霞,严馨,余正涛,石林宾,苏斐.基于自适应聚类的虚假评论检测[J].南京大学学报(自然科学版),2013,49(4):433-438. 被引量:33
  • 5张仕光,米据生,胡清华.粗糙ε-支持向量回归模型[J].南京大学学报(自然科学版),2013,49(5):650-654. 被引量:5
  • 6Hou C, Zhang C, Wu Y, et al. Multiple view semi-supervised dimensionality reduction. Pattern Recognition, 2010,43 (3) :720-730.
  • 7Chen L F,Liao H M,Ko M T,etal. A new LDA- based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000,33(10) :1713-1726.
  • 8Yu H,Yang J. A direct LDA algorithm for high dimensional data with application to face recognition. Pattern Recognition, 2001,34 ( 10 ) : 2067-2070.
  • 9Shen X B,Sun Q S,Yuan Y H. A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction. Neurocomputing, 2014.
  • 10袁运浩.多重集典型相关分析理论及在高维多表示数据中的应用.博士学位论文.南京理工大学,2013.

二级参考文献60

  • 1Y. S. Huang, C. Y. Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals.IEEE Trans. PAMI, 1995, 7(1): 90~94.
  • 2A.S. Constantinidis, M. C. Fairhurst, A. F. R. Rahman. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms.Pattern Recognition, 2001, 34(8): 1528~ 1537.
  • 3C.J. Liu, H. Wechsler. A shape-and-texture-based enhanced Fisher classifier for face recognition. IEEE Trans. Image Processing, 2001, 10(4): 598~608.
  • 4Yang Jian, Yang Jingyu. Generalized K-L transform based combined feature extraction. Pattern Recognition, 2002, 35 (1):295~297.
  • 5H. Hotelling. Relations between two sets of variates. Biometrika,1936, 28:321~377.
  • 6Z. Jin, J. Y. Yang, Z. S. Hu. Face recognition based on uncorrelated discriminant transformation. Pattern Recognition,2001, 34(7): 1405~1416.
  • 7Z. Q. Hong. Algebraic feature extraction of image for recognition. Pattern Recognition, 1991, 24(3): 211~219.
  • 8M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.
  • 9Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190.
  • 10谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部