期刊文献+

有效的社会媒体热点话题传播模型研究 被引量:1

Efficiently modeling information propagation of hot topics in social medias
下载PDF
导出
摘要 交互式社会媒体上的热点话题具有巨大的影响力,对热点话题进行建模和预测是一个非常重要但困难的问题.针对话题参与用户的特点进行了分析,构建了用户活跃度以及用户重入概率等模型的合理假设条件.根据话题发展模式和基于用户参与话题概率构建了单峰模型和多峰模型.分别基于两个不同数据集对模型进行了拟合和预测试验,试验结果表明,本文提出的模型在拟合与预测话题的发展趋势上的效果都优于SpikeM模型,尤其是对具有复杂波动发展模式的话题,提出的模型能很好地拟合与预测话题的波动. Hot topics on interactive social media websites enormously affect the incidence and development of the various events in both virtual and real world.Modeling and predicting information propagation process of hot topics are very important but difficult research problems.In this paper,characteristics of participants in hot topics are deeply analyzed.As a result,user activity degree,user popularity degree and user re-entrance probability are defined.The assumptions of traditional information propagation models of hot topics are relaxed according to two features in a hot topic:one user could participate the same topic many times and different users have different activity degrees.According two types of propagation patterns of hot topics,two effective models are proposed based on user participation probability.The first modelis used to model the single peak propagation pattern topics and the second mode is used to model multi-peaks propagation pattern topics.Two datasets are selected from popular social media websites and comprehensive experiments are conducted.Two models proposed in this paper and SpikeM model are implemented for comparative study.The experimental results show that the models proposed in this paper can effectively simulate single peak propagation pattern and multi-peaks propagation pattern of hot topics.Especially,the models proposed in this paper outperform SpikeM model for fitting topics with complex rise-fall propagation patterns.Furthermore,the models can accurately predict future propagation patterns of hot topics in real datasets.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期187-196,共10页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61170112) 北京市属高等学校科学技术与研究生教育创新工程建设项目(PXM2012_014213_000037)
关键词 热点话题 时间序列 传染病模型 传播模型 hot topic time series epidemic model propagation model
  • 相关文献

参考文献8

二级参考文献125

  • 1李爱国,覃征.在线分割时间序列数据[J].软件学报,2004,15(11):1671-1679. 被引量:27
  • 2詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 3Kumar R, Novak J, Raghavan P, Tomkins A. On the bursty evolution of blogspace. In: Proc. of the 12th Int'l Conf. on World Wide Web. New York: ACM Press, 2003. 159-178.
  • 4China Internet Network Information Center. Research report of 2007 China blog market. Statistical Report, 2007 (in Chinese). http://www.cnnic.net.cn/html/Dir/2007/12/26/4948.htm
  • 5China Internet Network Information Center. Research report of 2006 China blog. Statistical Report, 2006 (in Chinese). http://www.cnnic.net.cn/html/Dir/2006/09/25/4176.htm
  • 6Zhao ZL. A clear thinking toward the prosperity of blog: A disseminative understanding of news biog. Journal of Nanjing University of Posts and Telecommunications (Social Science), 2006,8(2):23-26
  • 7Qu H. "Alienation" of online community and media. Southeast Communication, 2006,(3):45-47
  • 8Kumar R, Novak J, Raghavan P, Tomkins A. Structure and evolution of blogspace. Communications of the ACM, 2004,47(12): 35-39.
  • 9Adar E, Zhang L, Adamic LA, Lukose RM. Implicit structure and the dynamics of blogspace. In: Proc. of the Workshop on the Weblogging Ecosystem, the 13th Int'l World Wide Web Conf. New York: ACM Press, 2004.
  • 10Adar E, Adamic LA. Tracking information epidemics in blogspace. In: Proc. of the 2005 IEEE/WIC/ACM Int'l Conf. on Web Intelligence. Compiegne: IEEE Computer Society Press, 2005. 207-214.

共引文献233

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部