期刊文献+

基于边缘扩散信息拟合的测地线活动轮廓模型 被引量:1

Geodesic Active Contour Model Based on Edge Diffusion Information Fitting
下载PDF
导出
摘要 针对测地线活动轮廓模型对轮廓初始化敏感的问题,提出一个基于边缘扩散信息拟合的测地线活动轮廓模型.首先定义了一个与图像边缘法线方向的二阶导数相关的扩散方程,通过求解这个扩散方程获得边缘扩散信息,利用这种边缘扩散信息构建了一个新的力场;然后由该力场驱动活动轮廓演化,使活动轮廓可以从边缘的两侧向真实目标边缘逼近,最终收敛到期望的边缘.本文模型采用一种快速有效的数值方法实现,水平集函数在整个演化过程中无需重新初始化,活动轮廓演化速度得到显著提高.一系列的人工和真实图像的实验结果表明,本文模型不仅对于初始轮廓的位置选择不敏感,并且可以分割弱边界目标、具有复杂几何结构的目标和带有孔洞结构的目标,综合性能优于一些传统算法. Aiming at the sensibility of geodesic active contour model to contour initialization, a model was proposed based on edge diffusion information fitting. A diffusion functional was defined, which is related to the second derivative in the normal direction of image edge, and the edge diffusion information was obtained by solving this diffusion functional. Then, the edge diffusion information was utilized to construct a novel force field, which drives the active contour to evolve and converge to desirable edges. An efficient numerical method was used for the implementation of the proposed model in order to converge rapidly and avoid reinitialization. Experimental results on a series of real and synthetic images demonstrate that the proposed model is robust to the initial contour, and it can segment the objects with the weak edges successfully, as well as the objects with complex geometry shapes and the objects with interior and exterior boundaries. It has better segmentation performance compared with some traditional models.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期157-161,170,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61273078 61302012) 中央高校基本科研业务费专项资金资助项目(N140403005)
关键词 边缘扩散信息 测地线活动轮廓 力场 水平集 edge diffusion information geodesic active contour force field level set
  • 相关文献

参考文献11

  • 1Kass M, Wilkin A, Terzopoulus D. Snakes: active contourmodel[ J ]. International Journal of Computer Vision, 1988,1(4):321 -331.
  • 2Casclles V, Kimmel R, Sapiro G. Geodesic active contours[J]. /memational Journal of Computer Vision, 1997,22( I ):61 -79.
  • 3Paragios N, Mel I ina-Gottardo O, Ramesh V. Gradient vectorflow fast geometric active contours [ J ]. IEEE Transactions onPattern Analysis and Machine Intelligence ^ 2004, 26 ( 3 ):402 -407.
  • 4Jalba A .Wilkinson M, Roerdink J. CPM:a deformable modelfor shape recovery and segmentation based on chargedparticles. [ J ]. IEEE Transactions on Pattern Analysis aiuiMachine Intellifience,2(H)4,26(10) : 1320 - 1335.
  • 5Xie X H, Mirmehdi M. MAC : magnetostatic active contourmodel [ J ]. IEEE Transactions on Pattern Analysis atulMachine Intelligence,2tK)8,30(4) :632 -646.
  • 6Xu C Y,Prince J. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing. 1998,7(3):359 -369.
  • 7Li C M,Xu C Y, Gui C F,et al. Distance regularized levelset evolution and its application to image segmentation[ J].IEEE Transactions on Image Processing, 2010,19 ( 12 ) ..3243 -3254.
  • 8Bresson X,Esedoglu S’ Vandergheynst P, et al. Fast globalminimization of the active contour/snake model [ J ]. Journalof Mathematical Imaging and Vision, 2007,28 : 151 -167.
  • 9Osher S, Rudin L. Feature-oriented image enhancement usingshock filters[ J]. SIAM Journal on Numerical Analysis,1990,27:919 -940.
  • 10Zhao H, Chan T, Merriman B, et al. A variational level setapproach to multiphase motion [ J ]. Journal of ComputationalPhysics,\996,\2h\19-\95.

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部