期刊文献+

多子群混合和声搜索算法 被引量:4

Multiple-sub-groups Hybrid Harmony Search Algorithm
下载PDF
导出
摘要 为提高和声搜索算法的优化性能,提出一种多子群混合和声搜索(MHHS)算法.该算法基于每个和声到最好和声的距离进行排序,并依据排序结果分层,每一层作为一个独立的子群.不同的子群融合不同的差分调整策略,以拓宽搜索范围;同时建立通信机制,使各子群以一定规格进行信息交流,促进子群的协同进化.实验仿真表明,本文算法在寻优精度、收敛性和鲁棒性方面均优于文献中报道的HS,EHS,NGHS,MPSO,CLPSO,DE,ODE和IABC算法. To improve the optimization performance of harmony search algorithm, a multiple-sub- groups hybrid harmony search (MHHS) algorithm is proposed. The algorithm sorts the entire harmony individuals according to the space distance between each harmony and the best harmony, and then builds multiple layers based on the ranked results, where each layer is as a unique sub- group. Different sub-groups integrate various differential adjustment strategies to broaden search ranges. Meanwhile, the communication mechanism is built to facilitate the information exchange among the multiple-sub-groups and to promote multiple-sub-groups coevolution. Simulation results show that the proposed algorithm is better than the existing algorithms such as HS, EHS, NGHS, MPSO, CLPSO, DE, ODE and IABC in terms of optimization accuracy, convergence and robustness.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期171-175,187,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61273155)
关键词 和声搜索算法 子群 差分调整 通信机制 harmony search algorithm sub-group differential adjustment communicationmechanism
  • 相关文献

参考文献10

  • 1Geem Z W, Kim J H, Loganathan G V. A new heuristicoptimization algorithm : harmony search [ J ]. Simulation,2001,76(2):60 -68.
  • 2Mahdavi M, Fesanghary M, Damangir E. An improveharmony search algorithm for solving optimization problems[J]. Applied Mathematics and Computation,2007,188(2):1567 -1579.
  • 3Das S,Mukhopadhyay A,Roy A,et al. Exploratory power ofthe harmony search algorithm : analysis and improvements forglobal numerical optimization [ J ]. IEEE Transactions onSystems, Man, and Cybernetics. Part B : Cybernetics, 2011 ,41(1):89 -106.
  • 4Zou D X.Gao L Q, Wu J H, et al. Novel global harmonysearch algorithm for unconstrained problems [ J ].Neurocomputing ,2010,73 ( 16) :3308 -3318.
  • 5Khalili M, Kharrat R, Salahshoor K, et al. Global dynamicharmony search algorithm : GDHS [ J ]. Applied Mathematicsand Computation,20\4,228 : 195 -219.
  • 6高立群,吴沛锋,邹德旋.基于变异策略的粒子群算法[J].东北大学学报(自然科学版),2010,31(11):1530-1533. 被引量:18
  • 7Liang J J,Qin A K, Suganthan P N, et al. Comprehensivelearning particle swarm optimizer for global optimization ofmultimodal functionsf J]. IEEE Transactions on EvolutionaryComputation 2006,10(3) :281 -295.
  • 8Stom R,Price K. Differential evolution : a simple and efficientadaptive scheme for global optimization over continuousspaces. Technical Report TR - 95 - 012 [ R ]. Berkeley :International Computer Science Institute, 1995.
  • 9Rahnamayan S,Tizhoosh H R, Salama M M A. Opposition-based differential evolution [ J ]. IEEE Transactions onEvolutionary Computation, 2008,12(1) :64 -79.
  • 10Gao W,Liu S. Improved artificial bee colony algorithm forglobal optimization [ J ]. Information Processing Letters,2011,111(17):871 -882.

二级参考文献12

  • 1Rahnamayan S,Tizhoosh H R,Salama M A.Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation . 2000
  • 2Rionda S B,Coello C A C,Montes E M,et al.Handling constraints using multiobjective opti mization concepts. International Journal for Numerical Methods in Engineering . 2004
  • 3Venkatraman S,Yen G G.A genetic framework for constrained opti mization using genetic algorithms. IEEE Transactions on Evolutionary Computation . 2005
  • 4Arora J S.Introductionto opti mumdesign. . 1989
  • 5Coello C A C,Montes E M.Constraint-handling in genetic algorithm through the use of dominance-based tournament selection. Advanced Engineering Informatics . 2002
  • 6Coello C A C,Becerra R L.Efficient evolutionary opti mization through the use of a cultural algorithm. Engineering Optimization . 2004
  • 7Koziel S,Michalewicz Z.Evolutionary algorithms,homo morphousmappings,and constrained parameter optimization. Evolutionary Computation . 1997
  • 8Runarsson T P,Yao X.Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation . 2000
  • 9Clerc M,Kennedy J.The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation . 2002
  • 10Coello C A.Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry . 2000

共引文献17

同被引文献28

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部