期刊文献+

一种改进的分布约束优化算法MULBS+

An Improved Distributed Constraint Optimization Algorithm MULBS^+
下载PDF
导出
摘要 完备算法虽然能够求得分布式约束优化问题最优解,但要消耗大量资源及时间,相反,非完备算法通过求得次优解来提高效率.MULBS作为一个有效的非完备算法,虽然在求解质量和时间上有所提高,但在解决赋值冲突时采用的回溯策略及并行搜索方面存在不足.通过对该算法的深入分析,本文针对上述问题进行了改进,提出其改进算法MULBS+.通过在回溯策略中引入最小冲突选择机制,以及在约束图密度较大时采用基于动态子图划分的并行搜索策略,进一步提高了算法的性能.实验表明,该算法除增加一定的通信信息外,其执行时间及求解质量均优于原算法. Although complete algorithms can be used in finding the optimal solution of a distributed constraint optimization problem, the resource and time consumptions are heavy. On the contrary, the shortcoming can be avoided in incomplete algorithms by obtaining suboptimal solutions. As an effective incomplete algorithm, MULBS can improve the quality of solution and reduce the runtime of solving process. However, there are shortcomings in parallel search and backtracking processes in dealing with conflict assignments. Based on thorough analysis of MULBS, an improved algorithm MULBS ~ is proposed, which overcomes the disadvantages of backtrack strategy caused by conflict and parallel search strategy in the original algorithm. In MULBS ~ , a minimal conflict selection mechanism is introduced in backtracking. On the other hand, MULBS ~ adopts global parallel search strategy based on dynamic graph partitioning which can quickly find a better solution in a constraint graph with large density. Experiments show that the proposed algorithm is better than the original one in both execution time and solution quality, except a certain increase of communication information.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期188-193,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61100090) 中央高校基本科研业务费专项资金资助项目(N110204006 N120804001) 沈阳市科技计划项目(F12-277-1-80) 宁夏回族自治区自然科学基金资助项目(NZ13265)
关键词 分布式约束优化 动态子图 图密度 MULBS MULBS+ distributed constraint optimization dynamic sub-graph graph density MULBS MULB S+
  • 相关文献

参考文献10

  • 1Gutierrez P,Meseguer P, Yeoh W. Generalizing ADOPT andBnB-ADOPT[ C ]// Proceedings of the 22nd InternationalJoint Conference on Artificial Intelligence ( IJCAI-11 ).Barcelona,2011:554 -559.
  • 2Marconi M, Helmut P. Multi-user eco-driving trainingenvironment based on distributed constraint optimization[C]//Proceedings of AAMAS. St. Paul,2013 :925 -932.
  • 3Lesser V,Corkill D. Challenges for multi-agent coordinationtheory based on empirical observations[C]//Proceedings ofAAMAS. Paris,2014:1157 - 1160.
  • 4Thomas L. Distributed constraint optimization : privacyguarantees and stochastic uncertainty [ D ]. Lausanne : SwissFederal Institute of Technology in Lausanne,2011.
  • 5Tambe M. Towards flexible teamwork [ J ]. Journal ofArtificial Intelligence Research, 1997,7(1) :83 - 124.
  • 6Sceni P, Johnson L, Pynadath D, et al. A prototypeinfrastructure for distributed robot,agent,person teams[C]//Proceedings of AAMAS. Melbourne,2003 :433 -440.
  • 7Yokoo M, Hirayama K. Distributed breakout algorithm forsolving distributed constraint satisfaction problems [ C ]//Proceedings of the Second International Conference onMultiagent Systems. Kyoto, 1996:401 -408.
  • 8Fitzpatrick S, Meertens L. An experimental assessment of astochastic, anytime, decentralized, soft colourer for sparsegraphs[C]// Proceedings of the International Symposium onStochastic Algorithms : Foundations and Applications. Berlin,2001:49 -64.
  • 9Enembreck F, Barthes Jean-Paul A. Distributed constraintoptimization with MULBS : a case study on collaborativemeeting scheduling [ J]. Journal of Network and ComputerApplications,2Q\2,35(1) : 164 — 175.
  • 10Petcu A. FRODO : a framework for open and distributedconstraint optimization, technical report. No. 2006/001 [ R].Lausanne : Swiss Federal Institute of Technology, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部