摘要
以圆柱螺旋弹簧作为蓄能元件,以普通自行车为实验对象设计并制作了刹车蓄能实验装置.分析了普通自行车的传统摩擦制动和蓄能实验自行车的能量回收模式制动过程,并建立了数学模型;通过实验对比分析了二者的实际制动特性.结果表明,实验自行车蓄能模式制动时的实际特性曲线与普通自行车传统摩擦制动时的实际特性曲线非常接近且变化趋势相同,说明实验自行车的制动特性可以满足驾驶者的传统习惯要求,圆柱螺旋弹簧制动能量回收方法应用于车辆上的制动特性能较好地符合舒适度指标.
The experimental equipment for braking energy recovery based on common bicycles was designed and produced, with a cylindrical helical spring as energy storage component. Traditional friction braking of common bicycle and energy recovery braking of experimental bicycle were analyzed in order to get their mathematical models. The actual braking features were experimentally measured and contrasted. The experimental results show that braking process feature of energy recovery bicycle is similar to the traditional friction braking bicycle, and their feature curves have the same development tendency. Conclusions are made that the experimental braking energy recovery bicycles can meet the braking requirements of riders, and vehicle braking with braking energy recovery method using cylindrical helical spring can conform to comfort condition.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第2期259-262,268,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(51305073)
关键词
圆柱螺旋弹簧
刹车蓄能
数学模型
传统摩擦制动
制动特性
cylindrical helical spring
braking energy recovery
mathematical model
traditional friction braking
braking feature