期刊文献+

1.2m量子通信跟踪系统的光学设计(英文)

Optical Design for 1.2 m Quantum Communication Tracking System
下载PDF
导出
摘要 基于大气的量子信道传输损耗低,不存在双折射效应,是量子通信实验的可行信道。通过建立卫星平台与光学地面站之间的高稳定低损耗量子信道,可实现超远距离的量子密钥分发。通过卫星中继,将有可能实现覆盖全球的量子通信网络,这也是目前国际公认的最为可行的方案之一。本文详细描述了1.2 m光学地面站望远镜的光学接收系统设计,望远镜采用R-C结构形式,具有近衍射极限的成像质量。为了抑制到达角起伏,实现微弧度级的跟踪精度,望远镜采用复合轴跟踪控制策略,可实现高精度和高带宽的跟踪。 Due to low absorption and negligible non-birefringent character in atmosphere, optical free space therefore serves as the most promising channel for large-scale quantum communication by use of satellites and optical ground stations. Quantum communication in space has become a new technological challenge in the evolving field of quantum communications. Its main goal is to achieve the distribution of single photons or entangled photon pairs from satellites to implement both quantum technologies such as quantum cryptography and fundamental quantum physics experiments. This article describes the equipment and features of the 1.2 m astronomical telescope which will perform experiments with quantum experiment satellite of China. The optical ground station uses 1.2 m gimbaled telescope to collect the photons, and the strategy of the system is slightly developed to meet the need of tracking LEO satellite, which has coarse and fine loop, and it can also control a transmitting and receiving laser beam within a few micro radians jitter. This telescope with multiple functions will play an important role in space-to-ground quantum communication.
出处 《光电工程》 CAS CSCD 北大核心 2015年第2期73-77,共5页 Opto-Electronic Engineering
关键词 量子通信 跟踪系统 快速偏转反射镜 quantum communication tracking system fast steering mirror
  • 相关文献

参考文献10

  • 1Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing [C]//Proc. of the IEEE Int. Conf. on Computers, Systems & SignalProcessing, 1984: 175-179.
  • 2Tolsias S M, HenningW, Furst M, et al. Experifiaental Demonstration of Free-Space Decoy-State QuantumKey Distribution orer 144 km [J]. Physical Review Letters(S0031-9007), 2007, 98: 010504-1-4.
  • 3Ursin R, Jennewein T, Kofler J. Space-QUEST Experiments with quantum entanglement in space [J]. Europhysics News (S0531-7479), 2009, 40(3): 26-29.
  • 4Marc Sans, Zoran Sodnik. Design of the ESA Optical Ground Station for Participation in LLCD [C]//Proc. of ICSOS, Ajaccio, Corsica, France, October9-12, 2012: 1-6.
  • 5Fields R A, Kozlowski D A, Yura H T, et al. 5.625 Gbps Bidirectional Laser Communications Measurements Between the NFIRE Satellite and an Optical Ground Station [J]. Proceedings of SPIE(S0277-786X), 2011, 8184:81840D.
  • 6Stewart J B, Murphy D V, Moores J D, et al. Comparing adaptive optics approaches for NASA LCRD Ground Station #2 [J]. Proceedings ofSPIE(S0277-786X)(S0277-786X), 2013, 8610: 86100M.
  • 7Sun X, Skillman D R, Hoffman E D, et al. Free space laser communication experiments from Earth to the Lunar R Orbiter in lunar orbit [J]. Optics Express(S1094-4087), 2013, 21(2): 1865-1871.
  • 8Biswas A, Kovalik J M. The Lunar Laser OCTL Terminal (LLOT) [J]. Proceedings of SPIE(S0277-786X), 2013, 8610: 861000-1-861000-8.
  • 9Villoresi P, Tamburini F, Aspelmeyer M, et al. Space-to-ground quantum-communication using an optical ground station" feasibility study [J]. Proceedings of SPIE(S0277-786X), 2004, 5551:113.
  • 10Nauerth S, Moll F, Rau M, et al. Air to Ground Quantum Key Distribution [J]. Proceedings of SPIE(S0277-786X), 2012, 8518: 85180D-1-85180D-6.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部