期刊文献+

粘弹性流体模拟的DCQ-QUICK格式 被引量:1

Simulating Viscoelastic Flow Field Based on DCQ-QUICK Scheme
下载PDF
导出
摘要 流场中对流项的离散是其数值求解的一大难点.本文基于非结构同位网格格心有限体积法,针对流场守恒方程与Oldroyd-B本构方程的对流项,提出了一种耦合高阶Q-QUICK格式的延迟修正格式.通过平面Poiseuille流在不同We数下数值解与解析解的比较,验证了该方法具有较高的精度和较好的数值稳定性.通过4:1粘弹性收缩流的数值模拟,揭示了不同Re、We数下流场中压力、应力变化及角涡生长情况,同时也表明了该方法可有效扩大We数的计算范围. The discrete for the convection term is one of the main di?culties for the num-erical solution of viscoelastic fluid flow. In this paper, for the conservation equations and the Oldroyd-B constitutive equation, a deferred correction method coupled with high order Q-QUICK scheme for the computation of the convection flux is proposed. This method is designed based on the finite volume method on unstructured collocated grids. The planar poiseuille viscoelastic flow is simulated numerically to verify the high precision and stability of the proposed method. In the simulation of 4:1 contraction viscoelastic flow, the changes of the stream lines and stresses as well as growing of the salient corner vortex versus the Weissenberg numbers are revealed. The numerical results show that the numerical method is capable of expanding the range of the Weissenberg numbers for nonlinear viscoelastic fluid.
出处 《工程数学学报》 CSCD 北大核心 2015年第1期50-60,共11页 Chinese Journal of Engineering Mathematics
基金 国家重点基础研究发展计划(2012CB025903)~~
关键词 粘弹性 Q-QUICK格式 We数 Oldroyd-B viscoelastic Q-QUICK scheme Weissenberg number Oldroyd-B
  • 相关文献

参考文献9

  • 1Yoo J Y,Na Y. A numerical study of the planar contraction flow of a viscoelastic fluid using the simpler algorithm[J]. Journal of Non-Newtonian Fluid Mechanics, 1991, 39(1): 89-106.
  • 2Edussuriya S S, Williams A J, Bailey C. A cell-centred finite volume method for modelling viscoelastic flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 117(1): 47-61.
  • 3Sahin M. A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calcula- tions[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14-15): 779-791.
  • 4华祖林,邢领航,顾莉,褚克坚.非结构网格计算格式研究及环境湍流模拟[M].北京:科学出版社,2010.
  • 5Baaijens F P T. An iterative solver for the DEVSS/DG method with application to smooth and non-smooth flows of the upper convected Maxwell fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 75(2-3): 119-138.
  • 6Van Doormaal J P, Raithby G D. Enhancement of the SIMPLE method for predicting incompressible fluid flow[J]. Number Heat Transfer, 1984, 7(2): 147-163.
  • 7Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation[J]. American Institute of Aeronautics and Astronautics Journal, 1983, 21(11): 1525-1532.
  • 8Baaijens F P T. Mixed finite element methods for viscoelastic flow analysis: a review[J]. Journal Non- Newtonian Fluid Mechanic, 1998, 79(2): 361-385.
  • 9Aboubacar M, Webster M F. A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 98(2-3): 83-106.

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部