期刊文献+

高阶分数阶微分方程系统的解的注记 被引量:1

A Note on Solutions to Systems of Fractional Differential Equations with Higher Order
下载PDF
导出
摘要 分数阶导数在描述不同物质的记忆与遗传性质方面提供了有力的工具.在科学和工程的不同领域,都用分数阶微分方程组来描述动力系统.本文主要探讨分数阶微分方程系统初值问题局部解的存在性与唯一性.对于线性系统,运用Schur分解定理,给出其局部解的存在性与唯一性,并通过举例说明该方法是有效的.对于非线性系统,利用Schauder不动点定理,给出了解的存在性;运用Banach不动点定理,给出了解的唯一性. Fractional-order derivatives provide a powerful instrument for describing the mem-ory and hereditary of different substances. A growing number of works from various fields throughout science and engineering deal with dynamical systems expressed by fractional-order equations. In this paper, the existence and uniqueness of the solution to the initial problem for systems of fractional differential equations are derived. Based on the Schur theorem, the existence and uniqueness of the local solution to the linear system are given. Furthermore, the effectiveness of the proposed method is verified by a simulated example. For a nonlinear system, the existence and uniqueness of the solution are obtained by the Schauder fixed point theorem and the Banach fixed point theorem, respectively.
出处 《工程数学学报》 CSCD 北大核心 2015年第1期61-71,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11361147) 山西省归国留学人员基金(2013-102)~~
关键词 Riemann-Liouville型导数 局部解 三角形 Riemann-Liouville differentiation local solution triangle
  • 相关文献

参考文献3

二级参考文献16

  • 1K.B.Oldham and J.Spanier.The Fractional Calculus[M].New York,Academic Press,1974.
  • 2I.Podlubny.Fractional Differential Equations[M].New York,Academic Press,1999.
  • 3R.C.Koeller.Polynomial operators,Stieltjes convolution,and fractional calculus in hereditary mechanics[J].Acta Mechanica,1986,58:251-264.
  • 4R.C.Koeller.Application of fractional caculus to the theory of viscoelasticity[J].J.Appl.Mech.,1984,51:229-307.
  • 5M.Lchise,Y.Nagayanagi and T.Kojima.An analog simulation of noninteger order transfer functions for analysis of eletrode processes[J].Electroanal.Chem.,1971,33:253-265.
  • 6O.Heaviside.Electromagnetic Theory[M].New York,Chelsea,1971.
  • 7N.Sugimoto.Burgers equation with a fractional derivative:hereditary effects on nonlinear acoustic waves[J].Fluid Mech.,1991,225:631-653.
  • 8A.A.Kilbas,H.M.Srivastava and J.J.Trujillo.Theory and Application of Fractional Differ-ential Equations[M].New York,Elsevier,2006.
  • 9C.P.Li and W.H.Deng.Remarks on fractional derivative[J].Appl.Math.Comput.,2007,187:774-784.
  • 10Bai Zhanbing,Lü Haishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J.Math.Anal.Appl.,2005,311:495-505.

共引文献17

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部