期刊文献+

自然对流问题两重网格算法的残量型后验误差估计(英文) 被引量:2

Residual a Posteriori Error Estimate of Two Level Finite Element Method for Natural Convection Problem
下载PDF
导出
摘要 本文得到了自然对流问题基于牛顿迭代两重网格算法的残量型后验误差估计.相对于标准有限元一层方法的后验误差估计,牛顿迭代两重网格算法的后验误差估计多了一些额外项.通过研究这些额外项的渐近行为,本文得到了这些额外项在误差估计中所起的作用.对于牛顿迭代两重网格方法的最优粗细网格匹配尺寸,这些额外项的收敛阶不高于离散解的收敛阶.数值算例验证了理论分析结论. This paper presents the a posteriori error estimate of residual for natural convec-tion problem, which is computed by the two level Newton finite element method. The a posteriori error estimate contains additional terms in comparison to the one obtained by the standard one level finite element method. The action of the add-itional terms in the error estimate is investigated by studying their asymptotic behaviour. For optimally scaled meshes between coarse and fine meshes of the two level Newton finite element method, the additional terms are not of higher conver-gence order than the order of the numerical solution. Numerical experiments verify the obtained theory results.
出处 《工程数学学报》 CSCD 北大核心 2015年第1期116-130,共15页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11171269 11401174) the Ph.D.Programs Foundation of Ministry of Education of China(20110201110027) the China Postdoctoral Science Foundation(2013M531311) the Henan Scientific and Technological Research Project(132102310309) the Educational Commission of Henan Province of China(14B110020 14B110021 14B110025) the Doctoral Foundation of Henan University of Science and Technology(09001625) the Science Foundation for Cultivating Innovation Ability of Henan University of Science and Technology(2014ZCX009) the Youth Scientific Foundation of Henan University of Science and Technology(2012QN029)
关键词 两重网格有限元法 自然对流问题 后验误差估计 two level finite element method natural convection problem posteriori error estimate
  • 相关文献

参考文献4

二级参考文献47

  • 1罗振东,毛允魁,朱江,郭兴明.定常的磁流体动力学问题的Galerkin-Petrov最小二乘混合元方法[J].应用数学和力学,2007,28(3):359-368. 被引量:3
  • 2Babuska I,Rheinboldt W C.Error estimates for adaptive finite element method[J].SIAM Journal on Numerical Analysis,1978,15(4):736-754.
  • 3Verfurth R.A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques[M].New York:Wiley,1996.
  • 4Berrone S.Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods[J].Computer Methods in Applied Mechanics and Engineering,2001,190:4435-4455.
  • 5Verfurth R,Bernardi C.A posteriori error analysis of the fully discretized time dependent Stokes equations[J].Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analysis Numerique,2004,38:437-455.
  • 6Berrone S,Marro M.Space-time adaptive simulations for unsteady Navier-Stokes problems[J].Computers& Fluids,2009,38:1132-1144.
  • 7Bernardi C,Verfurth R.A posterior error analysis of the fully discretized time-dependent Stokes equations[J].M2AN,2004,38:437-455.
  • 8Araya R,Barrenechea G,Valentin F.Stabilized finite element based on multiscale enrichment for the Stokes problem[J].SIAM Journal on Numerical Analysis,2006,44:322-348.
  • 9Verfurth R.A posterior error estimators for the Stokes equations[J].Numerische Mathematik,1989,55:309-325.
  • 10He Y.Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4):1263-1285.

共引文献2

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部