期刊文献+

基于神经网络的VAV空调系统多区域解耦控制 被引量:1

Research on decoupling control of multi-zone VAV air conditioning system based on BP neural networks
下载PDF
导出
摘要 分析变风量空调系统多区域运行时的耦合关系,针对变风量空调参数多变、强耦合的特点,提出了一种改进的误差反向传播算法的神经网络分散解耦控制方法,对送风量-室内温度进行解耦;然后采用基于BP神经网络的PID控制方法对解耦后的2个近似独立的单输入单输出系统进行控制。仿真结果表明,神经网络分散解耦算法具有很强的自学习功能和自适应解耦能力,控制系统响应快,稳态误差小,有效提高变风量空调系统的控制精度及性能指标。 The coupling relationship between operation. Aiming at the characteristics of variable variable parameters was analyzed when multi-zone parameters and strong coupling of VAV air conditioning system, an error back-propagation algorithm neural network distributed decoupling method was proposed, which was used to decouple the air volume and room temperature control system into two approximately independent single input-single output control systems. Then using the PID control method based on BP neural network controls the system. The simulation results show that the proposed method has strong self- learning function and adaptive deeoupling capacity, performance indicators. and effectively improved the control accuracy and
作者 贾晓龙 赵敏
出处 《信息技术》 2015年第2期168-171,共4页 Information Technology
关键词 变风量空调 解耦控制 BP神经网络 PID控制 VAV air conditioning system decoupling control BP neural network PID control
  • 相关文献

参考文献10

  • 1马岩.变风量空调系统温湿度解耦内模控制研究[D].重庆:重庆大学,2010.
  • 2于全勇.基于神经网络的解耦控制方法[J].微计算机信息,2011,27(10):51-52. 被引量:2
  • 3Zhang Yan-hong, Zhao De-an, Zhang Jian-shen. Research on PID controller based on the BP neural network [ C ]. Electronic and Me- chanical Engineering and Information Technology ,2011:516 - 519.
  • 4李界家,刘岱岩,祝婵楠.基于神经网络的变风量空调解耦控制[J].沈阳建筑大学学报(自然科学版),2013,29(1):187-192. 被引量:8
  • 5Huang Wei-hong, Yang Xue-jun. Decoupling Control of a Variable- Air-Volume Air-Conditioning System Based on State Feedback [ J ]. Intelligent Information Technology Application,2008,8 (4) : 1 - 4.
  • 6Liu Xing-qiao, Zhang Xiang-mei, Hu Jian-qun, et al. Three-motor synchronous decoupling control based on BP neural network [ C ]. Control and Decision Conference,2009:5365-5368.
  • 7刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社.2011.
  • 8王剑明,张虹,王建伟.多区域变风量空调系统神经网络预测控制研究[J].系统仿真学报,2009,21(16):5057-5060. 被引量:4
  • 9Piyush Shrivastava. Control of Nonlinear Process Using Neural Net- work Based Model Predictive Control [ J ]. International Journal of Engineering .Science and Technology,2011,3 (4) :2573 - 2581.
  • 10Hao Jie,Zhang Wen-xiang, Ling Ming-qing. Research on PID Con- trol Algorithm of BP Network baded on Two Axis Digital Control Turntable [ C ]. Digital Object Indentifier,2010:2233 - 2238.

二级参考文献25

  • 1胡慧,刘国荣.多变量系统模糊自适应解耦控制方法综述[J].湖南工程学院学报(自然科学版),2004,14(3):11-13. 被引量:3
  • 2马富军,张益华.浅谈VAV空调系统控制中的几个问题[J].制冷空调与电力机械,2005,26(6):68-69. 被引量:5
  • 3Jun Wang, Yan Wang. Performance improvement of VAV air conditioning system through feedforward compensation decoupling and genetic algorithm [J]. Applied Thermal Engineering (S 1359-4311), 2008, 28: 566-574.
  • 4Bourhan Tashtoush, M Molhim, M Al-Rousan. Dynamic model of an I-IVAC system for control analysis [J]. Energy (S0360-5442), 2005, 30: 1729-1745.
  • 5Shui Yuan, Ronald Perez. Multiple-zone ventilation and temperature control of a single-duct VAV system using model predictive strategy [J]. Energy and Buildings (S0378-7788), 2006, 38: 1248-1261.
  • 6S Joe Qin, Thomas A Badgwell. A survey of industrial model predictive control technology [J]. Control Engineering Practice (S0967-0661), 2003, 11: 733-764.
  • 7哈根(MartinT.Hagan).神经网络设计[M].北京:机械工业出版社,2002:79-81.
  • 8荣剑文.VAV空调系统的几个控制策略[J].制冷空调与电力机械,2007,28(4):19-22. 被引量:5
  • 9Liu X,Dexter'A. Fault-tolerant supervisory control of VAV air-conditioning systems[J].Energy and Buildings,2001,(04):379-389.
  • 10Gao J,Sun Y,Wen J. An experimental study of energy consumption and thermal comfort for electric and hydronic reheats[J].Energy and Buildings,2005,(37):203-214.

共引文献106

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部