期刊文献+

改进的混合动静态背景的分割方法 被引量:2

An Improved Subtraction Algorithm of Backgrounds with Stationary and Non-Stationary Scenes
下载PDF
导出
摘要 针对动静态背景场景下背景分割虚警率高的问题,提出了一种基于块直方图特征的Zivkovic混合高斯模型改进算法—BHZ-MoG。该算法设计了图像的块观测向量,并根据块观测向量的统计规律将图像块分类为动态、半动态、静态块,由此给出了结合块观测向量与块分类的块直方图特征提取算法,同时结合块直方图特征与Zivkovic混合高斯模型对不同类型的块分别进行背景分割与模型更新。实验结果表明,相较于Zivkovic混合高斯模型,BHZ-MoG算法能够在保证查全率不变的情况下,有效提高背景分割结果的查准率;Zivkovic混合高斯模型及BHZ-MoG的最大F1分数分别为0.758和0.790,说明了BHZ-MoG算法可以获得较佳的前、背景分割效果。另外,BHZMoG算法还可有效降低Zivkovic混合高斯模型在动态背景下的虚警率。 An improved algorithm--BHZ-MoG of Zivkovic-mixture of Gaussians (Z-MoG) based on block histogram feature is proposed to solve the problem that the background subtraction has a high false alarm rate in the mixture of stationary and non-stationary scenes. Observation vectors for image blocks are designed and blocks are classified into static, dynamic and half-dynamic blocks according to the statistical regularities of the observation vectors. A method that combines the observation vector and the classified information of a block is presented to extract block histogram feature. Block background models are constructed and updated from the combination of Z-MoG and histogram features. The BHZ-MoG can effectively reduce the high false alarm rate of Z-MoG under dynamic backgrounds. Experimental results show that the precision of the BHZ- MoG is higher than that of Z-MoG while the recall keeps the same. The maximal Fl-scores of the Z-MoG is 0. 758 and that of the BHZ-MoG is 0. 790, and it shows that the proposed algorithm can provide better subtraction results.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第2期25-30,共6页 Journal of Xi'an Jiaotong University
基金 国家"十二五"预研项目(513160702) 中央高校基本科研业务费专项资金资助项目(K5051303013 K5051303014) 中兴通讯股份有限公司研究基金资助项目(HX0114030318)
关键词 背景分割 图像块分类 颜色直方图特征 混合高斯模型 background subtraction image block classification color histogram feature mixtureof Gaussians
  • 相关文献

参考文献12

  • 1STAUFFER C,GRIMSON W.Adaptive background mixture models for real-time tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,1999:246-252.
  • 2KIM K,CHALIDABHONGSE T H,HARWOOD D,et al.Real-time foreground background segmentation using codebook model[J].Real-Time Imaging,2005,11:172-185.
  • 3BARNICH O,VAN DROOGENBROECK M.ViBe:apowerful random technique to estimate the background in video sequences[C]∥Proceedings of the IEEE Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ,USA:IEEE,2009:945-948.
  • 4ZIVKOVIC Z.Improved adaptive Gaussian mixture model for background subtraction[C]∥Proceeding of the 17th International Conference on Pattern Recognition.Piscataway,NJ,USA:IEEE,2004:28-31.
  • 5MATSUYAMA T,OHYA T,HABE H.Background subtraction for non-stationary scene[C]∥Proceeding of the Asian Conference on Computer Vision.Berlin,Germany:Springer,2000:622-667.
  • 6ZHONG J,SCLAROFF S.Segmenting foreground objects from a dynamic textured background via a robust Kalman filter[C]∥Proceedings of the 9th IEEE International Conference on Computer Vision.Piscataway,NJ,USA:IEEE,2003:44-50.
  • 7DALLEY G,MIGDAL J,GRIMSON W.Background subtraction for temporally irregular dynamic textures[C]∥Proceedings of the IEEE Workshop on Applications of Computer Vision.Piscataway,NJ,USA:IEEE,2008:1-7.
  • 8ZHAO Zhenjie,THIERRY B,ZHANG Xuebo,et al.A fuzzy background modeling approach for motion detection in dynamic backgrounds[C]∥Proceedings of the Multimedia and Signal Processing Communications in Computer and Information Science.Berlin,Germany:Springer,2012:175-178.
  • 9SHIMADA A,NAGAHARA H,TANIGUCHI R.Background modeling based on bidirectional analysis[C]∥Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2013:1979-1986.
  • 10KIM W J,KIM C.Background subtraction for dynamic texture scenes using fuzzy color histograms[J].IEEE Signal Processing Letters,2012,19(3):127-130.

同被引文献16

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部