期刊文献+

在轨运行低温液氢箱体蒸发量计算与增压过程研究 被引量:15

Evaporation Calculation and Pressurization Process of on-Orbit Cryogenic Liquid Hydrogen Storage Tank
下载PDF
导出
摘要 为了研究低温箱体在外部漏热下的在轨增压过程,采用FLUENT软件中的流体体积(VOF)方法,对AS-203飞行试验中低温液氢箱体进行数值模拟。通过对默认可实现k-ε模型进行参数调整,并与试验结果对比发现,调整参数后的模型可较好地预测低温液氢箱体在轨增压过程。因此,采用该模型对所研究低温液氢箱体进行500s增压数值模拟,计算结果表明:与气枕接触的壁面漏热绝大部分用来使箱体增压,小部分用来产生相变;在外部漏热下低温箱体压增速率约49.6Pa/s,箱体气液界面的蒸发率约为0.101 6%/h;在一定的微重力水平下,自然对流作用依然存在,其对流强弱主要取决于箱体尺寸以及外部漏热热流大小;在整个模拟过程中,气枕区热分层较之液相区更为严重;随着重力水平的降低,表面张力的作用逐渐凸显,界面形状变为曲面。 To investigate the on-orbit pressurization of cryogenic storage tank, the volume of fluid method in FLUENT is chosen to simulate the AS-203 flight experimental liquid hydrogen tank. Improving the original realizable κ-ε turbulence model and comparing with the experiment data, the modified model successfully predicts the on-orbit pressurization process of cryogenic liquid hydrogen storage tank. Therefore the calibrated realizable κ-ε model is adopted to research the liquid hydrogen storage tanks on-orbit pressurization for 500 seconds. The calculation shows that most of wall heat leakage increases the storage tank pressure, only a small part of external heat leakage facilitates vapor-liquid phase change. The pressure increase rate of the liquid hydrogen tank and the evaporation rate happened in the gas-liquid interracial, for the effect of external heat leakage, are about 49.6 Pa/s and 0. 1016%/hour respectively. Natural convection still exists under certain microgravity, and its intensity depends on the tank size and the external heat flux density. The thermal stratification of vapor region is more obvious than liquid region in the whole pressurization process. With the decreasing gravity level, the effects of surface tension are gradually prominent, and the gas-liquid interface shape becomes curved surface.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第2期135-140,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51376142) 航天低温推进剂技术国家重点实验室开放课题资助项目(SKLTSCP1311)
关键词 增压过程 热分层 微重力 相变 pressurization process thermal stratification microgravity phase change
  • 相关文献

参考文献14

  • 1CHATO D J.Cryogenic technology development for explorations missions[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit.Washington,DC,USA:AIAA,2007:1-10.
  • 2ZILLIAC G,KARABEYOGLU M A.Modeling of propellant tank pressurization[C]∥41th AIAA/ASME/ASEE Joint Propulsion Conference.Washington,DC,USA:AIAA,2005:1-25.
  • 3王赞社,顾兆林,冯诗愚,邱剑.低温推进剂贮箱增压过程的传热传质数学模拟[J].低温工程,2007(6):28-31. 被引量:13
  • 4PANZARELLA C H,KASSEMI M.On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J].Journal of Fluid Mechanics,2003,484:41-68.
  • 5PANZARELLA C,PLACHTA D,KASSEMI M.Pressure control of large cryogenic tanks in microgravity[J].Cryogenics,2004,44(6):475-483.
  • 6PANZARELLA C H,KASSEMI M.Self-pressurization of large spherical cryogenic tanks in space[J].Journal of Spacecraft and Rockets,2005,42(2):299-308.
  • 7BARSI S,KASSEMI M.Numerical and experimental comparisons of the self-pressurization behavior of an LH2tank in normal gravity[J].Cryogenics,2008,48(3):122-129.
  • 8GRAYSON G D,LOPEZ A,CHANDLER F O,et al.Cryogenic tank modeling for the Saturn AS-203experiment[C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Washington,DC,USA:AIAA,2006:1-7.
  • 9MATTICK S J,LEE C P,HOSANGADI A,et al.Progress in modeling pressurization in propellant tanks[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Washington,DC,USA:AIAA,2010:1-13.
  • 10KARTUZOVA O,KASSEMI M.Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]∥47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Washington,DC,USA:AIAA,2011:1-18.

二级参考文献18

  • 1代予东,赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进,2003,29(3):34-40. 被引量:6
  • 2张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导,2005,33(2):35-38. 被引量:17
  • 3张勇,李正宇,李强,胡忠军,李青.低温液体储箱加压排液过程计算模型比较[J].低温工程,2007(2):24-27. 被引量:10
  • 4Alok M, Todd S. Numerical modeling of pressurization of a propellant tank[J]. Journal of Propulsion and Power, 2001,17(2) :385-390.
  • 5Zilliac G, Karaloeyoglu M A. Modeling of propellant tank pressurization[R]. AIAA 2005-3549,2005.
  • 6Roudebusb W H. An analysis of the problem of tank pres- surization during outflow[R]. NASA TND-2585,1965.
  • 7Stochl R J, Maloy J E, Masters P A, et al. Gaseous helium requirements for the discharge of liquid hydrogen from a 3. 96- meter-(13 -ft-) diameter spherical tank[R]. NASA TND-7019,1970.
  • 8Dewitt R L, Stochl R J ,Johnson W R. Experimental evalu ation of pressurant gas injectors during the pressurized dis- charge of liquid hydrogen[R]. NASA TND-3458,1966.
  • 9Barsi S, Kassemi M. A tank self pressurization experiment using a model fluid in normal gravity[R]. AIAA 2005- 1143,2005.
  • 10Barsi S,Kassem M. Numerical and experimental compari sons of the self-pressurizaton behavior of an LH2 tank in normal gravity[J]. Cryogenics,2008,48(3-4) :122 -129.

共引文献22

同被引文献87

引证文献15

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部