摘要
激励频率和脉宽是研究脉冲电流激励下铁磁材料局部磁滞特性的两个重要因素。脉冲电流峰值保持不变,改变频率和脉宽,得到不同的局部磁滞曲线。由于磁通密度具有磁后效应,频率越高,脉宽越小,磁后效应越明显,局部磁滞曲线达到稳定所需要的激励电流脉冲数越多。为描述频率和脉宽对铁磁材料局部磁滞特性的影响,根据频率、脉宽和转折点磁通密度值的变化规律,采用曲线拟合的方法建立不同局部磁滞曲线拟合函数间的数学关系。模拟结果和实验结果表明,在一定范围内,拟合的数学式能够有效地反映频率和脉宽的影响规律,较准确地模拟频率和脉宽不同的脉冲电流激励下铁磁材料的局部磁滞特性。
Excitation frequency and pulsed width were two important factors in the study of the minor hysteresis characteristics of ferromagnetic materials under pulsed current excitation. With pulsed current peak remaining unchanged, different minor hysteresis curves were obtained through changing frequency and pulsed width. The higher frequency is and the narrower pulsed width is, the more pulsed numbers of excitation current were needed to stabilize minor hysteresis curves. This phenomenon was caused by the magnetic aftereffect of magnetic flux density. To describe the impact of frequency and pulsed width on the minor hysteresis characteristics, the curve fitting method was used to establish mathematic relation between fitting functions of different minor hysteresis curves according to the change law of frequency, pulsed width and the magnetic flux density turning points values. Compared with experimental results, in a certain range, the simulation results prove that the mathematic expression can effectively reflect the influence law of frequency and pulsed width, and accurately simulate the minor hysteresis characteristics of ferromagnetic material when frequency and pulsed width of pulsed current are varied.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2015年第5期1258-1265,共8页
Proceedings of the CSEE
基金
国防技术基础项目(Z1320130007)~~
关键词
局部磁滞
曲线拟合
脉冲电流
铁磁材料
minor hysteresis
curve fitting
pulsed current
ferromagnetic material