期刊文献+

舵机特征模型及其故障检测方法 被引量:9

Characteristic model-based approach for actuator fault diagnosis
原文传递
导出
摘要 舵机故障诊断对于提高飞行安全十分重要,传统方法面临着载荷时变不确定及自身存在速率饱和非线性等难题,往往会给诊断结果带来影响,导致虚警。为解决该问题,提出了一种舵机特征模型及其故障检测方法。首先根据舵机通频带和饱和速率2个外特性建立诊断用特征模型,然后采用状态观测器计算舵机转速和位置的响应参考值,最后根据转速和位置实际值与参考值的残差是否超过预设阈值来判断舵机的电机和驱动器是否发生故障。该方法可以有效避免因舵机载荷不确定及自身速率饱和所引起的虚警,同时,由于特征模型仅与通频带及饱和速率有关,故该方法具有简单、实用性强等显著优点。 Actuator fault diagnosis is very important to improve flight safety.Nevertheless,some nonlinear problems in classical approaches such as load time variability uncertainty and rate saturation etc.will affect the diagnosis,resulting in false alarm.This paper presents a characteristic model-based fault detection method for actuator to solve the problems.Firstly,a characteristic model used in diagnosis is established according to the bandwidth and the rate saturation of the actuator.Then,the reference responses of the velocity and displacement are calculated with state estimators.Lastly,judging by whether the residuals between the practical velocity or displacement and the references exceed the given thresholds or not,failures in motors or drives can be easily detected.This approach can avoid the false alarm caused by load uncertainty or rate saturation effectively,and the characteristic model,only related to the actuator bandwidth and rate saturation,is provided with the significant advantages of simplicity and practicability.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第2期640-650,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61104082)~~
关键词 舵机 特征模型 故障检测 特征参数 速率饱和 actuator characteristic model fault detection characteristic parameter rate saturation
  • 相关文献

参考文献21

  • 1Isermann R.Model-based fault-detection and diagnosis-status and applications[J].Annual Reviews in Control,2005,29(1):71-85.
  • 2周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:307
  • 3Zhang Y,Jiang J.Bibliographical review on reconfigu-rable fault-tolerant control systems[J].Annual Reviews in Control,2008,32(2):229-252.
  • 4Muenchhof M,Beck M,Isermann R.Fault-tolerant actuators and drives-structures,fault detection principles and applications[J].Annual Reviews in Control,2009,33(2):136-148.
  • 5Hwang I,Kim S,Kim Y,et al.A survey of fault detection,isolation,and reconfiguration methods[J].IEEE Transactions on Control Systems Technology,2010,18(3):636-653.
  • 6Cox N.The Mars exploration rovers:hitting the road on Mars[C]//Proceedings of 16th Triennial World Congress.South Africa:IFAC,2005:144-150.
  • 7Tarnowski E.Overview of potential evolutions of technologies applied in commercial transport airplanes[C]//Pro-ceedings of 17th World Congress.South Africa:IFAC,2008:7-21.
  • 8Goupil P.AIRBUS state of the art and practices on FDI and FTC in flight control system[J].Control Engineering Practice,2011,19(6):524-539.
  • 9Lavigne L,Zolghadri A,Goupil P,et al.Robust and early detection of oscillatory failure case for new generation Airbus aircraft,AIAA-2008-7139[R].Reston:AIAA,2008.
  • 10Lavigne L,Zolghadri A,Goupil P,et al.Oscillatory failure case detection for new generation Airbus aircraft:a model-based challenge[C]//Proceedings of 47th IEEE Conference on Decision and Control.Piscataway,NJ:IEEE,2008:1249-1254.

二级参考文献146

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献394

同被引文献70

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部