期刊文献+

基于声表面波聚二甲基硅氧烷薄膜形变研究 被引量:3

Study on Deformation of Poly(Dimethylsiloxane)Film Based on Surface Acoustic Wave
下载PDF
导出
摘要 提出了一种新的聚二甲基硅氧烷薄膜形变方法。在128°YX-LiNbO3压电基片上光刻叉指换能器,其激发的声表面波在压电基片上亲水表面的阻力共同作用下挤压微槽内水相微流体,使得其上的聚二甲基硅氧烷薄膜发生形变。采用红色染料溶液微流体为实验对象进行聚二甲基硅氧烷薄膜形变实验,结果表明,所提出的方法可有效实现聚二甲基硅氧烷薄膜形变,且与激发声表面波的电信号功率、水相微流体的体积及薄膜厚度有关。在13μL水相微流体,薄膜厚为12.5μm,电信号功率为26.5dBm时,薄膜最小形变距离为280μm。 A new method for deforming the poly(dimethylsiloxane)(PDMS)film is presented in this paper.An IDT is fabricated on a 128°YX-LiNbO3 substrate for exciting surface acoustic wave,which is used to squezze the aqueous microfluid in the PDMS microgroove on the piezoelectric substrate by the help of the resistance from the hydrophilic surface.Then,the PDMS film is deformed by the pressure of the aqueous microfluid.Red dye solution is used to demonstrate the operation of the deformation of the PDMS film.Results show that the proposed method can deform PDMS film,and the electrical signal power,the volume of the aqueous microfluid and the thickness of the PDMS film do also affect the deformation.A minimum distance of 280μm is obtained at the conditions of 13μL of the volume of the aqueous microfluid,12.5μm of the thickness of the PDMS film and 26.5dBm of electric signal power.
出处 《压电与声光》 CAS CSCD 北大核心 2015年第1期6-9,共4页 Piezoelectrics & Acoustooptics
基金 浙江省科技厅滚动支持基金资助项目(2009R50025) 浙江省重点学科基金资助项目(Xkl11077) 常州工学院校基金资助项目(YN1404)
关键词 薄膜 形变 声表面波 微阀 微流器件 film deformation surface acoustic wave microvalve microfluidic device
  • 相关文献

参考文献18

  • 1KIM J,SHIM Y,SONG S,et al.Rapid prototyping of multifunctional microfluidic cartridges for electrochemical biosensing platforms[J].Sensors and Actuators B:Chemical,2014,202(10):60-66.
  • 2THIBAULT B,PATRICK P,AUDREY L,et al.Development of a new microfluidic platform integrating Co-cultures of intestinal and liver cell lines[J].Toxicology in Vitro,2014,28(5):885-895.
  • 3EVANDRO P,DAVIDE F,PAOLO S,et al.Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices[J].Sensors and Actuators B:Chemical,2014,196(6):525-531.
  • 4HAIDER A J,LAWATI A,AFSAL M,et al.Combination of capillary micellar liquid chromatography with on-chip microfluidic chemiluminescence detection for direct analysis of buspirone in human plasma[J].Talanta,2014,127(9):230-238.
  • 5MARA M,MASSIMO G,ELISA M.Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis[J].Journal of Pharmaceutical and Biomedical Analysis,2014,87(1):36-52.
  • 6LORENZO C,DARIO C,STEFANIA M,et al.Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications[J].Advanced Drug Delivery Reviews,2013,65(11/12):1496-1532.
  • 7MAHMOOD G,AMIR S N,CARLOS G A,et al.Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis[J].Journal of Bioscience and Bioengineering,2014,117(4):504-511.
  • 8JITAE K,HORACIO K,ROGER H R,et al.Passive flow switching valves on a centrifugal microfluidic platform[J].Sensors and Actuators B:Chemical,2008,128(2):613-621.
  • 9LISEC T,KREUTZER M,WAGNER B.A bistable pneumatic microswitch for driving fluidic components[J].Sensors and Actuators A:Physical,1996,5(1/3):746-749.
  • 10KIRBY B J,SHEPODD T J,HASSELBRINK E F.Voltage-addressable on/off microvalves for high-pressure microchip separations[J].Journal of Chromatography A,2002,979(1):147-154.

同被引文献681

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部