期刊文献+

基于神经网络状态观测器的反演控制在双关节机械手控制中的应用 被引量:1

Back-stepping Position Controller for Two-joint Manipulator Based on Neural Network State Observer
下载PDF
导出
摘要 提出了一种基于改进的BP神经网络的自适应状态观测器,该类观测器无需系统的精确模型即可得到收敛于真实状态的状态观测值。利用Lyapunov直接法分析了基于状态输出误差的状态观测器的稳定性。然后,将状态观测器与反演控制器分开设计,以实现观测器得到的速度估计值代替实际速度,避免了实际应用中对速度信号的测量。最后通过对二关节机械手系统的仿真与比较,说明该控制方法的有效性。 An adaptive state observer based on modified BP neural network was developed, which can converge the observed state to the truth state without exact knowledge of the nonlinear system. The stability of the state observer was analyzed by Lyapunov direct method. Then the state observer and back-stepping controller were designed respectively, so the estimated velocity of observer substitu- ted the actual one, and avoided measurement of velocity signal in actual application. Finally, the effectiveness of control method is veri- fied by simulation and comparison of the two-joint manipulator system.
出处 《机床与液压》 北大核心 2015年第3期24-28,共5页 Machine Tool & Hydraulics
基金 盐城市科技计划项目(BK2009679)
关键词 改进的BP算法 神经网络 状态观测器 稳定性 速度信号 Modified BP Algorithm Neural network State observer Stability Velocity signal
  • 相关文献

参考文献7

  • 1BALL A A,KHALIL H K.High-gain Observers in the Pres- ence of Measurement Noise: A Nonlinear GainApproach [C]//47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008 : 2288-2293.
  • 2SUN Leping.Stahility Criteria for Delay Differential Equa- tion[J] .Journal of Shanghai Teachers University, 1998,27 (3):1-6.
  • 3姜寅令,齐绩.神经网络型观测器在二关节机械手中的应用[J].科学技术与工程,2011,11(6):1348-1350. 被引量:1
  • 4ADBOLLUHI F,TULEBI H A,PUTEL R V.A Stable Neu- ral Network Observer with Application to Flexible-joint Ma- nipulators [ C J//Proceedings of the 9'h International Confer- ence on Neral Information Processing, Stockholm, Sweden. 2002 : 1910-1914.
  • 5YOUNG H K, FRANK L, CHAOUKI T A.A Dynamic Re- current Neural Network Based Adaptive Observer for a Class of Nonlinear Systems[ J]. Automatica, 1997,33 (8) : 1539-1543.
  • 6闫茂德,徐德民,王惠刚,李俊.仅利用位置测量信息的机械手鲁棒滑模跟踪控制[J].机械科学与技术,2001,20(4):531-533. 被引量:2
  • 7LIU Jinkun.Radial Basis Function (RBF) Neural Network Control for Mechanical Systems[ M ] .Beijing:Tsinghua Uni- versity Press, 2013 : 193-203.

二级参考文献6

  • 1Lewis F,Liu K,Yesildirek A.Neural net robot controller with guaranteed tracking performance.IEEE Transaction on Neural Network,1995;6:708-711.
  • 2Selmic R,Lewis L.Multimodel neural networks identification and failure detection of nonlinear systems.Proceeding of the 40th IEEE Conference on Decision and Control;Florida,USA:2001:3128-3133.
  • 3Lakhal A N,Tlili A S,Benhadj Braiek N.Neural Network Observer for Nonlinear Systems Application to Induction Motors.International Journal of Control and Automation,2010;3(1):1-11.
  • 4Abdolluhi F,Tulebi H A,Putel R V.A stable neural network observer with application to flexible-joint manipulators.Proceedings of the 9th International Conference on Neural Information Processing,2002;4:1910-1914.
  • 5孟传伟,蒋平,陈辉堂,王月娟.基于滑模观测器的机器人系统传感器故障诊断[J].机器人,1998,20(3):221-226. 被引量:11
  • 6薛小峰,高阳,田志祥.基于反演的机器人滑模变结构控制研究[J].机械设计与制造,2010(8):169-170. 被引量:1

共引文献1

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部