期刊文献+

转向液压管路对多轴转向响应特性的影响

Influence of Steering Hydraulic Pipeline on Multi-axis Steering Response Characteristics
下载PDF
导出
摘要 通过三轴液压转向实验平台,利用AMESim软件,建立了转向液压系统模型。分析了压力、流量、管路长度、管路内径以及管路材料等单因素对转向油缸响应特性的影响规律,并针对压力、流量、管路内径等非线性影响因素以及系统PID参数进行了正交仿真实验,给出了优化结果和PID参数。结果表明:压力升高、响应速度加快,但在10~11 MPa范围内较为稳定;流量在14 L/min时响应速度最快且最不稳定;管路内径在11~17 mm范围内有较好的响应速度和稳定性;管路长度增加,响应滞后,稳定性减弱;比例系数P对响应时间的影响比较敏感、积分系数I对平滑性影响较大、微分系数D对稳定性较为敏感。 Through the three-axis hydraulic steering experiment platform, the steering hydraulic system model was established by using AMEsim software. The influence rules of the pressure, flow, pipe length, pipe inner diameter and material and such as single factor on steering cylinder response characteristics were analyzed. The orthogonal simulation experiment was performed by aimed at the nonlinear influence factors such as pressure, flow, pipe inner diameter and the system PID parameters, and the optimization results and the PID parameters were presented. The results show that : with increasing of pressure, the response speed is accelerated, but it is rela- tively stable within the range of 10 -11 MPa. When the flow is at 14 L/min, response is fastest and most unstable. It has high response speed and stability for pipe diameter in the range of 11 to 17 mm. With increasing of pipe length, the response is lagged with lower sta- bility. Proportion coefficient P is sensitive to the response time, integral coefficient I has larger influence to the smoothness, and differ- ential coefficient D is quite sensitive to stability.
出处 《机床与液压》 北大核心 2015年第3期119-122,71,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金项目(51105171)
关键词 三轴转向 AMESIM 管路特性 转向特性 Three-axle steering AMESim Pipeline characteristic Steering characteristics
  • 相关文献

参考文献7

二级参考文献25

  • 1刘刚,张子达.铰接式车辆行驶稳定性的理论分析与数值计算[J].吉林大学学报(工学版),2004,34(3):367-372. 被引量:21
  • 2贾会星,田晋跃.铰接式自卸车液压转向系统的特性分析[J].筑路机械与施工机械化,2005,22(3):56-57. 被引量:8
  • 3汪建春,杨文华.铰接式车辆对转向输入的动态响应[J].武汉冶金科技大学学报,1996,19(2):181-188. 被引量:2
  • 4张云清,陈伟,陈立平,杨景周.Magic Formula轮胎模型参数辨识的一种混合优化方法[J].汽车工程,2007,29(3):250-253. 被引量:15
  • 5Shiang Lung Koo, Fanping Bu, Han Shue Tan, et al. Vehicle steering control under the impact of low-speed tire characteristics[C]//Minnesota:Proceedings of the 2006 American Control Conference, 2006:4676-4681.
  • 6Westermann Stefan, Petry Frank. Tire road contact mechanics[J]. VDI Berichte, 2007, 1(2014): 243-244.
  • 7Olatunbosun O A, Bolarinwa O F E. Simulation of the effect of tire design parameters on lateral forces and moments[J]. Tire Science and Technology, 2004, 32(3): 146-163.
  • 8Nakashima H, Wong J Y. Three-dimensional tire model by the finite element method[J]. Journal of Terramechanics, 1993, 30(1): 21 -34.
  • 9Liu Li, Luo Yugong, Li Keqiang. Tire-road friction coefficient estimation based on normalized tire model[J]. Journal of Tsinghua University, 2009, 49(5): 723-727.
  • 10Jie Zhou, Robert A Hall, Greg Fowler, Ken Huntingford. Evaluation of the effect of off-the-road tire air pressure setting on tire performance[J]. International Journal of Mining, Reclamation and Environment, 2008, 22(3): 237- 244.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部