摘要
研究了含分数阶项的二自由度悬架系统,利用改进的平均法、拉氏变换法、谐波平衡法和复频域法得到了简谐激励下系统响应的解析解,比较了解析解和数值解,二者逼近的精度很高,证明了解析解的准确性。分析了分数阶参数对悬架系统的动力学行为的影响,发现含分数阶微分悬架系统响应稳态幅值能够大幅降低,其动力学性能得到极大提高。
The passive suspension system with fractional-order derivative is studied.Analytic solutions of system under harmonic excitation eventually are obtained by improved averaging method, laplace-transform meth-od, harmonic balance method and complex frequency-domain method.The analytic solutions prove to be accu-rate compared with numerical solutions.Effect of fractional-order parameters on dynamical behavior is analyzed. The research indicates that, the steady-state amplitude of passive suspension system with fractional-order deriva-tive could be significantly reduced and dynamical behavior can be greatly improved.
出处
《石家庄铁道大学学报(自然科学版)》
2015年第1期86-90,95,共6页
Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金
国家自然科学基金(11072158
11372198)
教育部新世纪优秀人才计划项目(NCET-11-0936)
关键词
分数阶
二自由度悬架
平均法
拉氏变换法
谐波平衡法
复频域法
fractional-order
two degree-of-freedom suspension
averaging method
laplace-transform method
harmonic balance method
complex frequency-domain method