摘要
有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(support vector machine,SVM)具有非线性运算能力,是建立软件缺陷预测模型的较好方法,但其缺少统一有效的参数寻优方法。本文针对该问题提出一种基于遗传优化支持向量机的软件缺陷预测模型,将支持向量机作为软件缺陷预测的分类器,利用遗传算法进行最优度量属性的选择和支持向量机最优参数的计算。实验结果表明,基于遗传优化支持向量机的软件缺陷预测模型具有较高的预测准确度。
Effective software defect prediction can improve the efficiency of software testing greatly,and is an important approach for guaranteeing the quality of software.Since support vector machine(SVM)is designed for nonlinear calculation,it is a good method to build software defect prediction model.But there is still lack unified and effective method for SVM's parameter optimization.In this paper,a software defect prediction model based on SVM optimized by genetic algorithm(GA)is proposed,in which the SVM is applied as the prediction classifier and the GA is used to select the optimal metric attributes and calculate the optimal parameters of SVM.Experimental results show that proposed model presents higher prediction accuracy on software defect prediction than the traditional models.
出处
《中国科技论文》
CAS
北大核心
2015年第2期159-163,共5页
China Sciencepaper
基金
高等学校博士学科点专项科研基金资助项目(20131101120043)
国防基础科研计划项目(B1120132031)
关键词
软件安全
软件缺陷预测
支持向量机
遗传算法
software security
software defect prediction
support vector machine
genetic algorithm