期刊文献+

少样本故障数据数控机床的贝叶斯可靠性分析 被引量:8

Bayesian reliability analysis for numerical control machine tools with small-sized sample failure data
下载PDF
导出
摘要 应用贝叶斯方法分析少样本故障数据数控机床的可靠性,给出2参数威布尔分布模型参数及数控机床可靠性指标的点估计和区间估计,通过马尔科夫链蒙特卡洛抽样解决了贝叶斯可靠性分析中求解复杂后验积分的难题。结合一具体实例,分析10台加工中心时间截尾的可靠性。计算结果表明:在充分利用先验信息的基础上,贝叶斯方法优于极大似然法和似然比检验法,适合于少样本数据的可靠性分析。 The reliability of numerical control(NC) machine tools with small-sized sample field data was analyzed using Bayesian method. Point and interval estimations of two-parameter Weibull distribution model and reliability indices of NC machine tools were presented. The problem of complex posterior integral in Bayesian reliability analysis was solved by Markov chain Monte Carlo(MCMC) sampling. Using a real field example, the reliability of 10 machining centers with time truncation was analyzed. The results show that based on the full use of priori information, Bayesian method is better than both maximum likelihood estimation method and likelihood ratio testing method, and suitable for reliability analyses of small-sized sample data.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第12期4201-4205,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51275305)~~
关键词 少样本数据 贝叶斯可靠性 数控机床 马尔科夫链蒙特卡洛 small-sized sample data Bayesian reliability numerical control machine tool Markov chain Monte Carlo
  • 相关文献

参考文献15

  • 1WANG Yiqiang, JIA Yazhou, JIANG Weiwei. Early failureanalysis of machining centers: A case study [J]. ReliabilityEngineering and System Safety, 2001, 72: 91-97.
  • 2DAI Yi, ZHOU Yifei, JIA Yazhou. Distribution of time betweenfailures of machining center based on type I censored data[J].Reliability Engineering and System Safety, 2003,79(3):375-377.
  • 3王智明,杨建国,王国强,张根保.多台数控机床的时间截尾可靠性评估[J].哈尔滨工业大学学报,2011,43(3):85-89. 被引量:15
  • 4杨建国,王智明,王国强,张根保.数控机床可靠性指标的似然比检验区间估计[J].机械工程学报,2012,48(2):9-15. 被引量:32
  • 5Hamada M S, Wilson A, Reese C S, et al. Bayesian reliability,springer series in statistics[M]. New York: Springer, 2010:110-122.
  • 6Gupta A, Mukheijee B, Upadhyay S K. Weibull extension model:A Bayes study using Markov chain Monte Carlo simulation[J].Reliability Engineering & System Safety, 2008, 93(10):1434-1443.
  • 7Jiang H, Xie M,Tang L C. Markov chain Monte Carlo methodsfor parameter estimation of the modified Weibull distribution[J].Journal of Applied Statistics, 2008,35(6): 647-658.
  • 8Jaheen Z F, Harbi M M A. Bayesian estimation for theexponentiated Weibull model via Markov Chain Monte Carlosimulation[J]. Communications in Statistics-Simulation andComputation, 2011, 40(4): 532-543.
  • 9Spiegelhalter D,Thomas A, Best N, et al. WinBUGS UserManual, Version 1.4[M]. UK: MRC Biostatistics Unit, 2003:1-44.
  • 10Ntzoufras I. Bayesian Modeling Using WinBUGS[M]. NewYork: John Wiley & Sons Inc, 2009: 31-124.

二级参考文献78

共引文献91

同被引文献53

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部