期刊文献+

半监督流形正则化算法检测应用层DDoS攻击研究 被引量:1

Research on semi-supervised manifold regularization algorithm to detect application layer DDoS attack
下载PDF
导出
摘要 现有的应用层分布式拒绝服务(DDo S)攻击检测方法都是基于用户浏览行为特征的统计来区别正常用户与非正常用户,因为要进行高层协议解析和深度数据包处理,所需计算的时间长,空间复杂度高,所以,实现在线检测面临极大困难。针对小样本应用层Web DDo S攻击,提出半监督流形正则化检测方法。首先,在1个时间窗口内以IP地址或域名为标识,将过滤后的Web日志映射到1个14维的特征空间以描述用户的访问行为;其次,采用半监督流形正则化的Laprls最小二乘法对此特征空间中小样本数据进行分类预测以区分正常用户与非正常用户;最后,在少量标记样本的适应性和未标记样本的学习2个方面,分别通过实验和其他算法进行对比。研究结果表明:所提出的算法在检测Web DDo S攻击方面比支持向量机、最小乘方二乘法、K-NN算法具有更高的分类正确率,说明半监督流形正则化的Laprls最小二乘法算法对检测小样本Web DDo S攻击具有较好的实用性。 The existing detection methods of application layer of distributed denial of service(DDo S) attack are based on the statistical characteristic of user browsing behavior to distinguish the abnormal user and normal users, and because the calculation time and space complexity of high-level protocol parsing and deep packet processing are very high, it is very difficult to realize online detection. Aiming at the small samples of Web DDo S attacks, a semi-supervised manifold regularization detection method was proposed. Firstly, Web log was filtered into a 14 dimensional feature spaces according to IP address or domain name within a time window to describe the user's access behavior. Secondly, Laprls least-square algorithm based on semi-supervised manifold regularization was designed to classify the small sample data in the feature space so that the abnormal user could be distinguished from normal users. Finally, through the experimental analysis, the algorithm was contrasted with other algorithms in terms of adaptability of small samples and usage of unlabelled samples. The results show the proposed algorithm has higher classification accuracy compared with other algorithms such as SVM, RLS and K-NN in terms of Web DDo S attack detection, which shows that a semi-supervised manifold regularization of Laprls least-square algorithm has better practicability for detecting Web DDo S attack.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第12期4232-4238,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60773013)~~
关键词 Web DDOS攻击检测 半监督流形正则化 小样本 Laprls最小二乘法 Web DDo S attack detection semi-supervised manifold regularization small sample Laprls least squares
  • 相关文献

参考文献18

  • 1Giralte L C, Conde C, Diego I M, et al. Detecting denial ofservice by modelling web-server behaviour[J]. Computers andElectrical Engineering, 2013’ 39(7): 2252-2262.
  • 2Devi S R,Yogesh P. A hybrid approach to counter applicationlayer DDOS attacks[J]. International Journal on Cryptographyand Information Security (IJCIS), 2012, 2(2): 45-52.
  • 3王风宇,曹首峰,肖军,云晓春,龚斌.一种基于Web群体外联行为的应用层DDoS检测方法[J].软件学报,2013,24(6):1263-1273. 被引量:17
  • 4Jeyanthi N, Iyengar N C H. An entropy based approach to detectand distinguish DDoS attacks from flash crowds in VoIPnetworks[J]. International Journal of Network Security, 2012,14(5): 257-269.
  • 5Kumar P A, Selvakumar S. Distributed denial of service attackdetection using an ensemble of neural classifier[J]. ComputerCommunications, 2011, 34(11): 1328—1341.
  • 6Stevanovic D, Vlajic N, Aijun A. Detection of malicious andnon-malicious website visitors using unsupervised neuralnetwork learning[J], Applied Soft Computing, 2013, 13:698-708.
  • 7阳时来,杨雅辉,沈晴霓,黄海珍.一种基于半监督GHSOM的入侵检测方法[J].计算机研究与发展,2013,50(11):2375-2382. 被引量:23
  • 8Chapelle O, Weston J, Sch6lkopf B. Cluster kernels forsemi-supervised leaming[J]. Advances in Neural InformationProcessing Systems, 2003, 15(5): 585-592.
  • 9Belkin M, Niyogi P, Sindhwani V. Manifold regularization: Ageometric framework for learning from labeled and unlabeledexamples[J]. Journal of Machine Learning Research, 2006, 7:2399-2434.
  • 10Zhou D, Bousquet 0,Lai T N. Learning with local and globalconsistencyfj]. Advances in Neural Information ProcessingSystems, 2004, 16(3): 321-328.

二级参考文献34

  • 1张晓惠,林柏钢.基于特征选择和多分类支持向量机的异常检测[J].通信学报,2009,30(S1):68-73. 被引量:20
  • 2林白,李鸥,刘庆卫.基于序贯变化检测的DDoS攻击检测方法[J].计算机工程,2005,31(9):135-137. 被引量:6
  • 3孙知信,唐益慰,程媛.基于改进CUSUM算法的路由器异常流量检测[J].软件学报,2005,16(12):2117-2123. 被引量:27
  • 4唐勇,卢锡城,胡华平,朱培栋.基于多序列联配的攻击特征自动提取技术研究[J].计算机学报,2006,29(9):1533-1541. 被引量:25
  • 5Lou D C, Hu C H. LSB steganographic method based on reversible histogram transfonnation function for resisting statistical steganalysis[J]. Information Sciences, 2012, 188(4): 346-358.
  • 6Saha B, Sharma S. Steganographic techniques of data hiding using digital images[J]. Defence Science Journal, 2012, 62(1): 11-18.
  • 7Harmsen J J, Pearlman W A.Steganalysis of additive noise modelable information hiding[C]//5th Conference on Security and Watermarking of Multimedia Contents. Santa Clara, Canada, 2003: 131-142.
  • 8I Ker A D. Steganalysis of LSB matching in grayscale images[J] I IEEE Signal Processing Letters, 2005, 12(6): 441-444. ].
  • 9Fridrich J, Soukal D, Goljan X.Maximum likelihood estimation of length of secret message embedded using +/- K steganography in spatial domain[C]//Security, Steganography and Watermarking of Multimedia Contents VII. Bellingham, 2005: 595-606.
  • 10Zhang I, Cox I J, Doerr G Ieee. Steganalysis for LSB matching in images with high-frequency noise[C]//9th IEEE Workshop on Multimedia Signal Processing. New York, 2007: 385-388.

共引文献41

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部