期刊文献+

非突变有限生灭系统的瞬态解

The Transient Solution for Non-mutation Finite Birth-Death Process
下载PDF
导出
摘要 研究了非突变有限生灭系统,利用系统转移速率矩阵的特殊形式,以Caley-Hamilton定理为基础,结合齐次线性递归系统的通解,获得了该系统形式简洁,计算比较封闭的幂级数形式的瞬态解,并给出了系数的确定方法,最后通过数值仿真验证了解的可靠性. The non-mutation finite birth-death process is studied.A simple transient solution is obtained for the power series form of the system based on Caley-Hamilton theorem by using the special form of transient rate matrix,and the coefficient in the power series satisfies the homogeneous linear recurrence relations,which enables fast and accurate numerical computations.The reliability for transient probability function has been illustrated by a numerical example in the end.
作者 刘海宁
出处 《兰州交通大学学报》 CAS 2014年第6期161-164,共4页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(11061017)
关键词 有限生灭系统 瞬态解 齐次线性递归系统 转移概率矩阵 finite birth-death process transient solution homogeneous linear recurrence system transient probability matrix
  • 相关文献

参考文献8

  • 1Sharma O P, Gupta U (2. Transient behaviour of an queues [J]. Stoch Process and Their Applications, 1982,13:327-331.
  • 2Krinik A. Dual processes to solve single server systems [J]. journal of Statistical Planning and Inference, 2005,135 121-147.
  • 3Takac L. Introduction to the theory of queue[M]. Ox- ford University Press, 1962.
  • 4Tarabia A M K E1-Baz A H. Exact transient solutions of nonempty Markovian queues [J]. Computers and Mathematics with Applications, 2006, 52 (6/7) : 985 - 996.
  • 5刘海宁.一类M/M/1/N排队系统瞬态解的幂级数形式[J].兰州交通大学学报,2013,32(4):168-170. 被引量:1
  • 6Chao X, Zheng Y. Transient analysis of immigration birth-death processes with total catastrophes[J]. Probability in Engineering and IMormational Sciences, 2003,17(1) :83-106.
  • 7董增福.矩阵分析教材[M].哈尔滨:哈尔滨工业大学出版社,1962.
  • 8刘海宁,屈明双.M/M/1排队系统嵌入Markov链瞬态解的格路径算法[J].兰州交通大学学报,2009,28(4):151-153. 被引量:2

二级参考文献12

  • 1Arzad A,Kherani. A direct approach to sojourn times in a busy period of an M/M/1 queue[J]. Queueing Syst, 2006,53 : 159-169.
  • 2Parthasarathy P R,Selvaraju N. Exact transient solution of a state-dependent queue in discrete time[J]. Operations Research Letters, 2001,28.243-248.
  • 3Tarabia A M K. A new formula for the transient behaviour of a non-empty M/M/1 queue [J]. Applied Mathematies and Computation, 2002,132:1-10.
  • 4Leguesdron P, Pellaumail J, Rubino G, et al. Sericola, Transient analysis of the queueing [J ]. Adv. Appl. Probab, 1993,25 : 702-713.
  • 5Krinik A, Mohanty S G. The combinatorics of birthdeath processes and applications to queues[J]. Queueing Systems, 1997,26 : 255-267.
  • 6Tarabia A M K, El-Baz A H. Transient solution of a random walk with chemical rule[J]. Physica, 2007,382 (A) : 430-438.
  • 7Flajolet P,Guillemin F. The formal theory of birth and death processes, lattice path combinatorics, and continued fractions [J]. Advances in Applied Probability, 2000,32(3) : 750-778.
  • 8Takac L. Introduction to the theory of queue[M]. Ox-ford University Press, 1962.
  • 9Sharma O P, Gupta U C. Transient behaviour of anqueues [J], Stoch Process and Their Applications,1982,13:327-331.
  • 10Tarabia A M K,E1-Baz A H. Exact transient solutionsof nonempty Markovian queues [J]. Computers andMathematics with Applications?2006,52 : 985-996.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部