期刊文献+

矩阵方程AXB+CYD=E的双对称最小二乘解及其最佳逼近

An Least Squares Bisymmetric Solution and Optimal Approximation of the Matrix Equation AXB + CYD = E
下载PDF
导出
摘要 利用本文提出的迭代算法可得到矩阵AXB+CYD=E的双对称最小二乘解,并对算法的收敛性给出了证明,当选取初始矩阵为零时能得到矩阵方程的极小范数双对称最小二乘解,利用此方法还可得到任意给定矩阵的最佳逼近双对称解. An iterative method is presented to solve the least squares bisymmetric solution for the matrix equation AXB + CYD = E, and the convergence of the method is proved. By this iterative method, the minimum norm of the least squares bisymmetric solution can be obtained by choosing a special kind of initial bisymmetrie matrices. In addition, the unique optimal approximation pair solution to the given matrices in Frobenius norm can be obtained.
作者 刘莉 王伟
出处 《宁夏师范学院学报》 2014年第6期17-23,55,共8页 Journal of Ningxia Normal University
关键词 矩阵方程 双对称最小二乘解 极小范数解 最佳逼近解 Matrix equation Least squares bisymmetric solution Least norm solution Optimal approximation solution
  • 相关文献

参考文献3

  • 1Peng Zhengyun, Peng Yaxin. An effcient iterative method for solving the matrix equation AXB + CYD = E [ J ]. Nu- merical Linear Algebra with Application,2006,13 (6) : 473- 485.
  • 2Sheng Xingping, Chen Guoliang. An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB + CYD = E [ J ]. Journal of Compu- tational and Applied Mathematics 2010,233 ( 11 ) :3030-3040.
  • 3Peng Zhengyun. The neareast bisymmetric solutions of line- ar matrix equations [ J ]. Journal of Computertational Mathematics, 2004,22 ( 6 ) : 873 - 880.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部