期刊文献+

虹膜图像质量评价方法研究 被引量:2

Study on the Assessment Method of Iris Image Quality
下载PDF
导出
摘要 虹膜识别中,图像质量除受到采集设备、环境光照、目标位置、目标状态等因素影响外,错误的图像分割也会导致图像质量下降,因此单一量度或较少量度都不能准确评价用于匹配计算的虹膜图像质量.基于此设计了可用虹膜区、虹膜大小、清晰度、扩张度等八个评价因子;研究了各评价因子所表征的图像质量特性;提出了利用图像分割参数计算各评价因子的方法;根据实验得到的各评价因子阈值以及图像分割可能的错误,对质量评价因子进行校准;最后融合校准后的因子形成虹膜图像质量评价值.实验结果显示所提出的方法可有效评价虹膜图像质量. The quality of iris images is affected by characters of acquisition device, illumination condition, object position, and the status of the object. Incorrect segmentation may also lead to the low quality of iris area. Hence, the assessment method using one or two factors cannot cvaluate the iris image quality accurately. Based on above, our method exploits eight factors ( iris useable area, size of iris, sharpness, dilation, etc. ) to evaluate the iris image quality. The image characters represented by every factor are explained. The calculating methods of factors are proposed by use of picture segmentation parameter technology. In addition, the qudity evaluation factors are calibrated according to the thresholds getting from experiments and possibilities of the segmentation errors. The finale quality score is obtained by fusing these calibrated factors. The experiment results show that our method is efficient to evaluate the image quality.
作者 蔺勇 杨雅宁
出处 《宁夏师范学院学报》 2014年第6期71-78,共8页 Journal of Ningxia Normal University
基金 教育部科学技术研究重大项目(210240) 宁夏师范学院创新团队资助项目(201210)
关键词 虹膜识别 图像质量 质量评价 生物信息 数据校准 数据融合 Iris recognition Image quality Quality assessment Biological information Data calibration Data fusing
  • 相关文献

参考文献13

  • 1Daugman J. How iris recognition works [ J ]. IEEE Trans- actions on Circuits and Systems for Video Technology, 2004,14( 1 ) :21-30.
  • 2Jang J, Park K R, Kim J, et al. New focus assessment method for iris recognition systems[ J ]. Pattern recogni-tion letters ,29 ( 13 ) : 1759-1767.
  • 3Kalka N D,Zuo J,Schmid N A,et al. Estimating and fu- sing quality factors for iris biometric images [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A : Systems and Humans,2010,40 ( 3 ) :509-524.
  • 4Zhu X D, Liu Y N, Ming X, et al. A Quality Evaluation Method of Iris Images Sequence Based on Wavelet Coef- ficients in "Region of Interest" : Proceedings on 4th In- ternational Conference CIT, 2004 [ C ]. Berlin Heidel- berg: Springer, 2004 : 24 -27.
  • 5Chen Y, Dass S C, Jain A K. Localized iris image quality using 2-d wavelets : Advances in Biometrics 2005,2005 [ C ]. Berlin Heidelberg : Springer, 2005 : 373-381.
  • 6Ma L, Tan T, Wang Y, et al. Personal identification based on iris texture analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 ( 12 ) : 1519-1533.
  • 7Daugman J. New methods in iris recognition [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B :Cybernetics, 2007,37 ( 5 ) : 1167-1175.
  • 8Daugman J, Downing C. Effect of severe image compres- sion on iris recognition performance [ J ]. IEEE Transac- tions on Information Forensics and Security, 2008, 3 ( 1 ) :52-61.
  • 9Ye X, Yao P, Long F, et al. Iris image real - time pre - estimation using compound BP neural network:Advances in Biometrics 2005 [ C ]. Berlin Heidelberg: Springer, 2005:450-456.
  • 10苏丽,李乾.基于端点标识的虹膜有效区域提取算法[J].计算机工程,2012,38(8):125-127. 被引量:2

二级参考文献16

  • 1Daugman J G.High Confidence Visual Recognition of Persons by a Test of Statistical Independence[J].IEEE Tractions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
  • 2Maasek L.Recognition of Human Iris Patterns for Biometric Identification[D].Perth,Australia:The University of Western Australia,2003.
  • 3高婧婧.指纹识别预处理算法研究[D].成都:电子科技大学,2004.
  • 4Gonzalez.数字图像处理[M].北京:电子工业出版社:2004.
  • 5Daugman J G. How Iris Recognition Works[J]. IEEE Trans- actions on Circuits and Systems for Video Technology, 2004, 14(1): 21-30.
  • 6Wildes R P. Iris Recognition: An Emerging Biometric Tech- nology[J]. Proceedings of the IEEE, 1997, 85(9): 1348-1363.
  • 7Wildes R P, Asmuth J C, Green G L, et al. A System for Automated Iris Recognition[C]//Proc. of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA IEEE Press, 1994.
  • 8Liu Xiaomei, Bowyer K W, Flynn P J. Experiments with an Improved Iris Segmentation Algorithm[C]//Proc. of the 4th IEEE Workshop on Automatic Identification Advanced Technologies. New York, USA: IEEE Press, 2005:118-123.
  • 9Jaehan K, Venu G, Vipin C. A Robust Iris Localization Method Using an Active Contour Model and Hough Transform[C]// Proc. of the 20th International Conference on Computer Vision and Pattern Recognition. Istanbul, Turkey: 1EEE Press, 2010.
  • 10Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level Set Evolution Without Re-initialization: A New Variational Formulation[C]//Proc. of International Conference on Com- puter Vision and Pattern Recognition. Los Alamitos, USA: IEEE Computer Society, 2005.

共引文献6

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部