期刊文献+

浅谈大数据处理技术架构的演进 被引量:3

Discussion on the Transformation of Big Data Processing Technical Architecture
下载PDF
导出
摘要 新兴应用对大数据处理技术架构的实时性要求不断提高,这对传统的大数据处理技术架构提出严峻的挑战。必须转变架构满足大数据相关业务的实时性要求。文章介绍Hadoop离线处理架构的瓶颈以及Storm实时处理架构的优点,同时,结合实际项目中变更大数据处理技术架构的经验,阐述在实施架构变更过程中的关键技术,实验结果证明使用变更后的技术架构可以满足业务的实时性要求。 New applications ask more to the real-time requirement of the Big Data processing technical architecture, which gives a severe chalenge to the traditional Big Data processing technical architecture. To satisfy the real-time requirements of Big Data relevant business, we have to change the architecture. This article introduces the bottleneck of Hadoop outline processing architecture and the advantages of Storm real-time processing architecture. Meanwhile, combining the experience of changing Big Data processing technical architecture in actual project simultaneously, it describes the key technology in the process of implementation of architecture transformation. The result shows the technical architecture after changing can satisfy the real-time requirements of our business.
作者 任桂禾 王晶
出处 《信息通信技术》 2014年第6期47-51,共5页 Information and communications Technologies
关键词 大数据处理技术 实时性 HADOOP STORM Big Data Processing Technical Real-time Hadoop Storm
  • 相关文献

参考文献9

二级参考文献50

  • 1何洪舟.Java程序中访问Oracle数据库的技术分析与实现[J].计算机应用与软件,2007,24(5):79-80. 被引量:7
  • 2Rajkumar Buyya,Chee Shin Yeo,Srikumar Venugopal,et al.Cloud computing and emerging IT platforms:vision,hype,and reality for delivering computing as the 5 th utility[J].Future Generation Computer Systems,2009,25 (6):599-616.
  • 3Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51 (1):107-113.
  • 4Borthakur D.Hadoop[EB/OL].[2011-06-15].http://lucene.apache.org/hadoop.
  • 5Ghemawat S,Gogioff H,Leung P T.The google file system[C] //Proc of the 19 th ACM Symp on Operating Systems Principles.New York:ACM,2003:29-43.
  • 6John Dorion.Applications powered by Hadoop[EB/OL].[2011-06-15].http://wiki.apache.org/hadoop/PoweredBy.
  • 7Amazon.Amazon elastic compute cloud[EB/OL].[2011-06-15].http://aws.amazon.com/ec2.
  • 8Borthakur D.The hadoop distributed file system:architecture and design[EB/OL].[2011-06-15].http://hadoop.apache.org/hdfs/docs/current/hdfs _ design.html.
  • 9Zaharia M,Konwinski A,Joseph A D.Improving mapreduce performance in heterogeneous environments[C] //Proc of the 8th Usenix Symp on Operating Systems Design and Implementation.New York:ACM Press,2008:29-42.
  • 10Xie Jiong,Yin Shu,Ruan Xiao-jun,et al.Improving mapreduce performance through data placement in heterogeneous hadoop clusters[C] //IPDPS Workshops.Atlanta:IEEE Computer Society Press,2010:1-9.

共引文献261

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部