摘要
Computer forensics and identification for traditional Chinese painting arts have caught the attention of various fields. Rice paper's feature extraction and analysis methods are of high significance for the rice paper is an important carrier of traditional Chinese painting arts. In this paper, rice paper's morphological feature analysis is done using multi spectral imaging technology. The multispectral imaging system is utilized to acquire rice paper's spectral images in different wave- length channels, and then those spectral images are measured using texture parameter statistics to acquire sensitive bands for rice paper's feature. The mathematical morphology and grayscale statistical principle are utilized to establish a rice paper's morphological feature analytical model which is used to acquire rice paper' s one-dimensional vector. For the purpose of eval- uating these feature vectors' accuracy, they are entered into the support vector machine(SVM) classifier for detection and classification. The results show that the rice paper's feature is out loud in the spectral band 550 nm, and the average classifi- cation accuracy of feature vectors output from the analytical model is 96 %. The results indicate that the rice paper's feature analytical model can extract most of rice paper's features with accuracy and efficiency.
基金
University-Industry-Science Partnership Project of Guangdong Province and Ministry of Education,China(No.2012B091000155)
Strategic Emerging Industries Project of Guangdong Province(No.2011912027)