期刊文献+

高频激光脉冲作用下原子的光子和光电子发射

Photon and photoelectron emission of the atom under the action of high-frequency laser pulse
原文传递
导出
摘要 通过数值求解含时薛定谔方程,研究了原子在高频激光作用下的电离概率、光电子谱和谐波发射谱.研究发现,随着入射激光强度的增加,原子的电离概率逐渐增加,达到最大后下降,其光电子发射谱和高次谐波发射谱均由单峰结构变成多峰.而通过对谐波发射谱的时间-频率分析发现,在电离抑制区域,脉冲的峰值附近谐波受到抑制,谐波发射主要发生在上升沿和下降沿,二者的干涉效应产生了谐波的多峰值结构.利用光电子发射谱和谐波发射谱随入射激光强度的改变规律,可以实现对引起原子电离抑制的激光强度进行诊断. By numerically solving the time-dependent Schr6dinger equation, we investigate the ionization probability, photo- electron spectrum, and harmonic emission spectrum of the atom under the action of high-frequency laser pulses. It is found that with the increase of incident laser pulse intensity, the ionization probability of the atom first increases to a maximum value gradually and then decreases, and in this process, both the photoelectron spectrum and high-order harmonic generation spectrum change from a single-peak structure to a multi-peak one. Through the time-frequency analysis of the harmonic emission spectrum, we also find that the harmonic emission is suppressed around the pulse peak, and it occurs at the rising edge and the falling edge, which interfere with each other, thus forming the multi-peak structure. Utilizing the laws of the changes of photoelectron and harmonic spectra with incident laser pulse intensity, we can diagnose the laser intensity at which the atomic ionization suppression occurs.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第4期86-91,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2013CB922200) 国家自然科学基金(批准号:11274141 11034003 11304116 11274001 11247024) 吉林省基础研究计划基金(批准号:20140101168JC)资助的课题~~
关键词 高频激光脉冲 谐波发射谱 光电子谱 high-frequency laser pulses, harmonic emission spectrum, photoelectron spectrum
  • 相关文献

参考文献36

  • 1Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown 8, Aligmtskas S, Andriukaitis G, BMitmas T, Miicke O D, Pugzlys A, Baltugka, A, Shim B, Schrauch S E, Gaeta A, Herngmdez-Garcla C, Plajs L, Becker A, Jaron-Backer A, Murnane M M, Kapteyn H C .2012, Sci- erce 336 1287.
  • 2Spielmann C, Burnet.t N H, Sartania S, Koppitsch R, Schnfirer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661.
  • 3Paul P M, Toma E S, Breger P, Mullot G, Augd F, Ba, l- cou P, Muller H G, Agostini P .2001, Science 292 1689.
  • 4Krausz F, Ivanov M .2009, Re:v. Mod. Phys. 81 163.
  • 5Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U .2008, Science 320 1614.
  • 6Ackermmnl W. Asova G, Ayvazyan V, Azima A, Baboi N, Bahr J, Balandin V .2007, Na, t. Photor,. 1:336.
  • 7Du H C, Well Y Z, Wang X S, Hu B T .2014, Chir. Phys. B 23 0332(12.
  • 8Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766.
  • 9Agostini P, Fabre F, Mainfray G, Petite G, RMlman N K 1979 Phys. Rev. Lett. 42 1127.
  • 10Pont M, Gavrila M 1990 Ph,ls. Rev. Lett. 65 2362.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部