期刊文献+

Schwarzschild时空中带非线性记忆项的波动方程解的破裂 被引量:2

Finite time blow up for a wave equation with nonlinear memory in Schwarzschild spacetime
原文传递
导出
摘要 本文研究Schwarzschild时空中带非线性记忆项的波动方程径向解的破裂.首先在ReggeWheeler坐标下得到与原问题等价的方程.然后引入两个试探函数,并结合方程的解构造泛函.最后通过一个迭代过程证明:当非线性记忆项中的指标满足一定条件时,不管初值多么小,解在有限时间内破裂. In this work, we study the Cauchy problem of wave equation with nonlinear memory in Schwarzschild spacetime. Blow up result will be established when the power p of the memory and the data satisfy some conditions. For this purpose, we use two test functions to construct a functional. After that by introducing an iteration argument we conclude that the functional satisfies the conditions of Kato type lemma.
机构地区 丽水学院数学系
出处 《中国科学:数学》 CSCD 北大核心 2015年第2期117-128,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11326141和11301489) 浙江省自然科学基金(批准号:LQ13A010013 LY14A010005和LY14A010010)资助项目
关键词 Schwarzschild时空 非线性记忆 波动方程 破裂 Schwarzschild spacetime, nonlinear memory, wave equation, blow up
  • 相关文献

参考文献2

二级参考文献18

  • 1KONG DeXing1,LIU KeFeng2,& SHEN Ming3 1Department of Mathematics,Zhejiang University,Hangzhou 310027,China,2Department of Mathematics,University of California at Los Angeles,CA 90095,USA,3Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China.Time-periodic solutions of the Einstein's field equations II:geometric singularities[J].Science China Mathematics,2010,53(6):1507-1520. 被引量:3
  • 2Georgiev,V.,Lindblad,H.and Sogge,C.D.,Weighted Stricharz estimates and global existence for semilinear wave equations,Amer.J.Math.,119,1997,1291-1319.
  • 3Glassey,R.T.,Finite-time blow-up for solutions of nonlinear wave equations,Math.Z.,177,1981,323-340.
  • 4Glassey,R.T.,Existence in the large for □u = F(u) in two space dimensions,Math.Z.,178,1981,233-261.
  • 5John,F.,Blow up of solutions of nonlinear wave equations in three space dimensions,Manuscripta Math.,28,1979,235-268.
  • 6Schaeffer,J.,The equation □u = |u|^p for the critical value of p,Proc.Royal Soc.Edinburgh,101,1985,31-34.
  • 7Sideris,T.C.,Nonexistence of global solutions to semilinear wave equations in high dimensions,J.Differential Equations,52,1984,378-406.
  • 8Strauss,W.A.,Nonlinear scattering theory at low energy,J.Funct.Anal.,41,1981,110-133.
  • 9Takamura,H.,An elementary proof of the exponential blow-up for semilinear wave equations,Math.Meth.Appl.Sci,17,1994,239-249.
  • 10Tataru,D.,Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equations,Trans.Amer.Math.Soc.,353,2001,795-807.

共引文献25

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部