摘要
令H与K是维数大于2的复Hilbert空间,ξ∈C.假设Φ:B(H)→B(K)是满足对任意A,B∈B(H)都有AB=ξBA*Φ(A)Φ(B)=ξΦ(B)Φ(A)*的可加满射.本文证明了,(1)如果ξ=1,则存在酉或反酉算子U:H→K以及非零实数c使得Φ(A)=c UAU*对所有A∈B(H)成立;(2)如果ξ∈R\{1}且Φ保单位元,则存在酉或反酉算子U:H→K使得Φ(A)=UAU*对所有A∈B(H)成立;(3)如果ξ∈C\R且Φ保单位元,则存在酉算子U:H→K使得Φ(A)=UAU*对所有A∈B(H)成立.
Let H and K be complex Hilbert spaces with dimensions greater than 2, and ξ ∈ C. Assume that Ф : B(H) → B(K) is an additive surjective map satisfying that, for any A, B ∈ B(H), AB = ξBA* Ф(A)Ф(B) = ξO(B)Ф(A)*. We show that, (1) if ξ =1, then there exist a unitary or an anti-unitary operator U : H → K and a nonzero real number c such that Ф(A) = cUAU* for all A ∈ B(H); (2) if ξ ∈ R / {1} and Ф is unital, then there is a unitary or an anti-unitary operator U : H → K such that Ф(A) = UAU* for all A ∈ B(H); (3) if ξ ∈ C / R and Ф is unital, then there is a unitary operator U : H → K such that Ф(A) = UAU* for all A ∈ B(H).
出处
《中国科学:数学》
CSCD
北大核心
2015年第2期151-165,共15页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11171249
11101250和11271217)
山西省青年研究基金(批准号:2012021004)
山西省高等学校优秀青年学术带头人支持计划资助项目