期刊文献+

带拯救的两参数Markov碰撞过程的遍历性

Ergodicity properties of 2-parameter Markov collision processes with resurrection
原文传递
导出
摘要 本文考虑了一类带拯救的两参数Markov碰撞过程.首先讨论了带拯救的两参数Markov碰撞q-矩阵发生函数的性质,通过发生函数给出了过程的正则性和唯一性判别准则,得到了过程的常返性和遍历性的充分必要条件,并给出了几个易于验证的充分条件.最后,给出了遍历情形下该过程平稳分布的发生函数,并给出了过程强遍历的判别准则. This paper concentrates on investigating ergodicity properties of 2-parameter Markov collision pro- cesses with resurrection. In this paper, some properties of the generating functions for 2-parameter Markov collision q-matrix with resurrection are firstly investigated in detail. By using the generating functions of the corresponding q-matrix, the criteria for regularity and uniqueness for such structure are first established. Easy checking criteria including several clear-cut corollaries are established for recurrence and ergodicity of such pro- cesses. Finally, the equilibrium distribution is given in an elegant closed form for the ergodic case. The criteria for strongly ergodicity is also given.
出处 《中国科学:数学》 CSCD 北大核心 2015年第2期183-194,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371374) 教育部博士点基金(批准号:20110162110060)资助项目
关键词 常返 强遍历 正则性 唯一性 平稳分布 ordinary ergodicity, strong ergodicity, regularity, uniqueness, equilibrium distribution
  • 相关文献

参考文献19

  • 1Sevastyanov B A. On certain types of Markov processes (in Russian). Uspehi Mat Nauk, 1949, 4:194.
  • 2Ezhov I I. Branching processes with group death. Theory Probab Appl, 1980, 25:202-203.
  • 3Kalinkin A V. Extinction probability of a branching process with interaction of particles. Theory Probab Appl, 1982, 27:201-205.
  • 4Kalinkin A V. On the extinction probability of a branching process with two kinds of interaction of particles. Theory Probab Appl, 2003, 46:347-352.
  • 5Chen A Y, Pollett P K, Zhang H J, et al. The collision branching process. J Appl Probab, 2004, 41:1033-1048.
  • 6陈安岳,李俊平.两参数广义碰撞分枝过程[J].中国科学(A辑),2009,39(8):915-932. 被引量:1
  • 7Foster J H. A limit theorem for a branching process with state-dependent immigration. Ann Math Statist, 1971, 42: 1773-1776.
  • 8Pakes A G. A branching process with a state-dependent immigration component. Adv in Appl Probab, 1971, 3: 301 -314.
  • 9Yamazato M. Some results on continuous time branching processes with state-dependent immigration. J Math Soc Japan, 1975, 27:479-496.
  • 10Chen A Y, Renshaw E. Markov branching processes with instantaneous immigration. Frobab Theory Related Fields, 1990, 87:209-240.

二级参考文献16

  • 1Harris T E. The Theory of Branching Processes. Berlin: Springer-Verlag, 1963.
  • 2Athreya K B, Ney P E. Branching Processes. Berlin: Springer-Verlag, 1972.
  • 3Asmussen S, Hering H. Branching Processes. Boston: Birkhauser, 1983.
  • 4Sevastyanov B A. On certain types of Markov processes (in Russian). Uspehi Mat Nauk, 4:194 (1949).
  • 5Ezhov I I. Branching processes with group death. Theory Probab Appl, 25:202-203 (1980).
  • 6Kalinkin A V. Extinction probability of a branching process with interaction of particles. Theow Probab Appl, 27:201-205 (1982).
  • 7Kalinkin A V. On the extinction probability of a branching process with two kinds of interaction of particles. Theory Probab Appl, 46:347-352 (2003).
  • 8Chen A Y, Pollett P K, Zhang H J, et al. The collision branching process. J Appl Prob, 41:1033-1048 (2004).
  • 9Chen R R. An extended class of time-continuous branching processes. J Appl Prob, 34:14 23 (1997).
  • 10Chen A Y. Uniqueness and extinction properties of generalized Markov branching processes. J Math Anal Appl, 274:482-494 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部