期刊文献+

月地高速再入返回器热控设计及实现 被引量:10

Design and implementation of circumlunar return and reentry spacecraft thermal control system
原文传递
导出
摘要 针对月地高速再入返回器不同阶段大功率散热、小功率保温与高速返回过程中高温隔热之间的突出矛盾,以及狭小、局促空间内设备热量的收集、传输、排散与阻断等技术难题,首次构建一种基于柔性自适应"热开关"的小型再入返回类航天器热控体系,成功研制出一套基于异构式环路热管的一体化柔性、高效热管理系统.在轨飞行数据表明:核心热控产品环路热管控温运行模式下实际传热能力超过65 W,阻断模式下漏热量小于2 W,"热导比"大于30,能够很好地实现"热开关"功能,确保了返回器所有设备的温度水平优于指标要求. There are three aspects of difficulties in the thermal control system design of circumlunar free return and reentry spacecraft. In the on orbit-working mode, large thermal load is required to be rejected; in the storage mode, the heat load is small and additional heating is needed, while heat insulation is required in the reentry. Moreover, the technique of equipments' heat collection, transmission, rejection and insulation in the narrow space is very difficult. To arrange the complex thermal requirements, a new thermal control hierarchy system for small reentry spacecrafts based on the flexible and self-adaptable heat switch is constructed for the first time, and an integrative flexible and efficient thermal control system based on heterogeneous loop heat pipe (LHP) is successfully developed. The on-orbit flight data show that the actual heat-transfer capability of the pivotal thermal product LHP is more than 65 W in the temperature-controlled working mode, while the heat leak is less than 2 W in the blocking mode, and the ratio of thermal conductivity is more than 30, which means a good realization of the heat switch function, and ensures that the temperature levels of all the circumlunar free return and reentry flight test vehicle equipments are better than index requirements.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2015年第2期145-150,共6页 Scientia Sinica(Technologica)
基金 国家中长期科技发展规划重大专项资助项目
关键词 月地返回 高速再入 热控 环路热管 热开关 热导比 circumlunar free return, reentry, thermal control, loop heat pipe, heat switch, conductance ratio
  • 相关文献

参考文献6

二级参考文献27

  • 1范含林.神舟飞船热设计及飞行温度数据分析[C].空间飞行器总体专业委员会年会,2002.
  • 2PATEL V P, BARIDO RICHARD, et al. Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS) [C]. 31st International Conference on Environmental Systems, 2002.
  • 3Preter E. The Lunar Base Handbook. NewYork: The McGraw-Hill Companies, Inc., 1999. 140-141.
  • 4Gaier J R, Jaworske D A. Lunar dust on heat rejection system surfaces: Problems and prospects. NASA/TM-2007-214814, 2007.
  • 5Gaier J R,Siamidis J, Panko S R, et al. The effect of simulated lunar dust on the absorptivity, emissivity, and operating temperature on AZ-93 and AG/FEP thermal control surfaces. NASA/TM-2008-215492, 2008.
  • 6Agui J H, Nakagawa M. Dust on the Moon and Mars. AIAA 2005-539, 2005.
  • 7Lyall M Eric,Williams Andrew D,Hengeveld Derek W. Subsystem design methodology for responsive space missions,AIAA RS7-2009-3009[R].Washing ton:AIAA,2009.
  • 8Young Quinn E,Stucker Dr Brent,Gillespie Thad. Modular thermal control architecture for modular spacecraft,AIAA 2008-1959[R].Washington:AIAA,2008.
  • 9闵桂荣;郭舜.航天器热控制[M]北京:科学出版社,1998.
  • 10闵桂荣;张正纲.卫星热控制技术[M]北京:宇航出版社,1991.

共引文献59

同被引文献85

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部